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Design of a Surface Deformation Measuring Instrument for
the Surface Tension Driven Convection Experiment (STDCE-2)

10 Introduction

This Final Technical Report covers the work accomplished (under NAG3-1300) from 1
October 1991 to 1 October 1993. The grant is a direct result of Dr. H. Philip Stahl's
(of Rose-Hulman Institute of Technology) participation in the NASA/ASEE Summer
Faculty Fellowship Program at NASA Lewis Research Center sponsored by Case
Western Reserve University and the Ohio Aerospace Institute.

The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid
physics experiment designed to provide quantitative data on the thermocapillary flow
of fluid under the influence of an increased localized surface temperature. STDCE
flew on the Space Shuttle Columbia in the First United States Microgravity Laboratory
(USML-1) in June 1992. The second flight of this experiment (STDCE-2) is scheduled
for 1995. The specific science objectives of STDCE-2 are to determine the extent and
nature of thermocpillary flows, the effect of heating mode and level, the effect of the
liquid free-surface shape, and the onset conditions for and nature of oscillatory flows.
In order to satisfy one of these objectives, an instrument for measuring the shape of
an air/oil free-surface must be developed.

2.0 Objectives

The purpose of the first year of this project was to conduct a feasibility study to
develop one or more non-contact (i.e. optical) techniques for measuring the surface
deformation of an air-oil free-surface under the influence of a localized thermal load
(i.e. CO2 laser beam or electric heater) which could be integrated into the anticipated
reflight of the Surface Tension Driven Convection Experiment (STDCE-2). While
initially these measurements were to be performed in a laboratory environment, the
instrument had to be capable of operating in a Space Transport System (STS)
environment for the United States Microgravity Laboratory flights USML-2.

The primary purpose of the second year of this project was to design, build, calibrate,
and fully characterize the instrument(s) prototyped during the first year. A secondary
purpose was to actively participate in the design of an engineering model and flight
system for STDCE-2/USML-2.

Additionally, both years had the goal of developing algorithms and software to
automatically analyze the output data provided by the surface deformation measuring
instrument.



3.0 Accomplishments

A prototype instrument was developed, designed, built, calibrated, and fully
characterized for measuring the surface deformation of an air-oil free-surface under
the influence of a CO2 laser beam. The prototype instrument utilizes a modified two-
channel Ronchi test technique where a collimated beam of light is reflected off of the
oil free-surface and passed through a sinusoidal amplitude grating. The transmitted
irradiance pattern provides quantifyable data about the surface's slope as a function of
position. These results are described in great detail in the following publications:

Meyers, William S., Design and Calibration of a Two Channel Ronchi System to
Contour a Dynamic Fluid Surface, Master's Thesis, Rose-Hulman institute of
Technology, 1993.

Meyers, William S., and H. Philip Stahl, "Sensitivity of Two-Channel Ronchi
Test to Grating Misalignment," SPIE Vol. 1994, 1993.

Meyers, William S., and H. Philip Stahl, "Contouring of a Free Oil Surface,"
SPIE Vol. 1755, 1992.

Meyers, William S., Brent C. Bergner, Ronald D. White, David J. Huff, and H.
Philip Stahl, "Contouring of a Free Qil Surface," SPIE Vol. 1779, 1992.

Algorithms to analyze the output slope data provided by the surface deformation
measuring instrument were developed and reported in:

Fischer, David J., John T. O'Bryan, Robert Lopes, and H. Philip Stahl, "A
Vector Formulation for Interferogram Surface Fitting," Applied Optics, Vol.32,
No.25, pp.4738, 1 September 1993

Fischer, David J., and H. Philip Stahl, "Mechanism for Surface Fitting of
Interferometric Slope Data," SPIE Vol. 2003, 1993.

Fischer, David J., and H. Philip Stahl, "A Vector Formulation for Ronchi Shear
Surface Fitting," SPIE Vol 1755, 1992.

Fischer, David J., John T. O'Bryan, and H. Philip Stahl, "A Vector Formulation
for Interferogram Surface Fitting," SPIE Vol. 1779, 1992.

The developed algorithms were implemented in a software program called THIN which
has been delivered to NASA Lewis Research Center (LeRC). This program is being
extended by NASA LeRC to automatically analyze Ronchi patterns using image
processing techniques.



A modular flight system was designed for the anticipated reflight of the Surface
Tension Driven Convection Experiment (STDCE-2) on the United States Microgravity
Laboratory (USML-2). It was designed to satisfy the following science requirements:

. observe the entire surface for three different sized chambers
(12 mm, 20 mm, and 30 mm).

. measure slopes as small as 5 ym/mm.

. measure slopes as great as 30 pm/mm without vignetting.

. spatially sample the surface at least 10 times per diameter.
. reconstruct the surface shape along a given diameter.

. and, indicate when the oil is filled to its flat surface position.

The design of this instrument is published in:

Stahl, H. Philip, "Conceptual Design of a Surface Deformation Measuring
Instrument for the Surface Tension Driven Convection Experiment (STDCE-2),"
SPIE Vol. 2005, 1993. ‘




4.0 Student Involvement

Aside from the technical objectives, a major goal of this project was to provide a
number of students with their first exposure to a 'real-world' research project. This
was accomplished and the Principle Investigator is exceedingly proud of each
student's achievements.

William S. Meyers developed and calibrated the prototype instrument for his Master's
of Science in Applied Optics with assistance from Brent Bergner, Leif Sorensen, Ron
White, and Dave Huff. Bill is now pursuing a Ph.D. in Bio-Physics at the University of
Indiana/Purdue University in Indianapolis. He is performing research on optical
tomographic imaging of the human body.

David J. Fischer developed and encoded the Ronchi pattern slope analysis algorithms
with assistance from John O'Bryan and Dr. Robert Lopez of the Mathematics
Department. Dave was the recipient of a full fellowship and is pursuing a Ph.D. in
Optics at the University of Rochester

The software package THIN was developed through the efforts of: Kent Flint, Brad
Freriks, Kurt Louis, Tony McAllister, Steven Reid, Brad Rodeffer, John Snider, Jason
Snyder, Kevin Stultz, and Dr. Dale Oexmann of the Computer Science Department.

Kevin Stultz is pursuing an M.S. in Computer Science at the University of Alabama in
Huntsville. He is performing research on image processing methods to analyze
Ronchi patterns. His research is a direct extension of the work begun under this
grant.

The participation of each student is summarized in the attached table.

Finally, two students participated in the NASA/JASEE Summer Internship Program at
NASA LeRC sponsored by OAl and CWRU - Bill Meyers (Summer 92 and 93) and
Kevin Stultz (Summer 93). And, Dave Fischer participated in the NASA/ASEE
Summer Internship Program at NASA Langley in the Summer of 1992.
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50 Master's Thesis

Meyers, William S., Design and Calibration of a Two Channel Ronchi
System to Contour a Dynamic Fluid Surface, Master's Thesis, Rose-
Hulman Institute of Technology, 1993.

6.0 Publications

Fischer, David J., John T. O'Bryan, Robert Lopes, and H. Philip Stahl, "A
Vector Formulation for Interferogram Surface Fitting," Applied Optics,
Vol.32, No.25, pp.4738, 1 September 1993

Fischer, David J., and H. Philip Stahl, "Mechanism for Surface Fitting of
Interferometric Slope Data," SPIE Vol. 2003, 1993.

Fischer, David J., and H. Philip Stahl, "A Vector Formulation for Ronchi
Shear Surface Fitting," SPIE Vol. 1755, 1992.

Fischer, David J., John T. O'Bryan, and H. Philip Stahl, "A Vector
Formulation for Interferogram Surface Fitting," SPIE Vol. 1779, 1992.

Meyers, William S., and H. Philip Stahl, "Sensitivity of Two-Channel
Ronchi Test to Grating Misalignment,” SPIE Vol. 1994, 1993.

Meyers, William S., and H. Philip Stahl, “"Contouring of a Free Qil
Surface," SPIE Vol 1755, 1992.

Meyers, William S., Brent C. Bergner, Ronald D. White, David J. Huff,
and H. Philip Stahl, "Contouring of a Free Oil Surface," SPIE Vol. 1779,
1992.

Stahl, H. Philip, "Conceptual Design of a Surface Deformation Measuring
Instrument for the Surface Tension Driven Convection Experiment
(STDCE-2)," SPIE Vol. 2005, 1993.

7.0 Presentations

Stahl, H. Philip, "Measuring Deformations in Space," University of
Arizona Optical Sciences Center Colloquium, Tucson, AX 1993.
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Conceptual Design of a
Surface Deformation Measuring Instrument for the
Surface Tension Driven Convection Experiment (STDCE-2)

H. Philip Stahl
Stahl Optical Systems
5 Hyvue Dr.
Newtown, CT 06470

ABSTRACT

The planned Space Shuttle Experiment STDCE-2 (Surface Tension Driven Convection Experiment) requires &
non-contact Surface Deformation measuring instrument to monitor the shape of a dynamic fluid surface. This
paper preseats 8 conceptual design for this instrument which best satisfies the various science, engineering, and
managerial constraints.

1.0 INTRODUCTION

The ability to grow semi-conductor crystals, biological crystals, or to solidify metal alloys (on earth or in space)
is limited by convective fluid flow which introduces imperfections into the lattice structure. Convection arises
from two sources: gravity and surface tension. Gravity driven convection (natural convection or buoyancy)
occurs when there is a temperature difference within a fluid volume. Colder, heavier fluid is pulled down
causing warmer, lighter fluid to rise. Surface-tension driven convection (thermocapillary flow) occurs when
there is a temperature difference across the surface of a fluid. Because a warmer fluid bas a lower surface
tension, it is pulled towards the colder surface liquid (which bas a higher surface tension). As the warmer fluid

moves across the surface, it draws liquid up to the surface, producing a flow.

On Earth, buoyancy driven convection dominates crystal growth and alloy solidification. Also, gravity causes
Jattice structures to sag’ and limits the size of crystals which can form in suspension. But in microgravity,

. buoyancy flow is reduced to 10 and crystals of any size remain in suspension. Thus, material processing in

space offers great promise. However, thermocapillary flow still exists and must be understood.
2.0 SURFACE TENSION DRIVEN CONVECTION EXPERIMENT

The Surface Tension Driven Convection Experiment (STDCE) is a fundamental fluid physics experiment
designed to provide quantitative data on the thermocapillary flow-of fluid under the influence of an increased
Jocalized surface temperature '. STDCE flew on the Space Shuttle Columbia in the First United States
Microgravity Laboratory (USML-1) in June 1992. The second flight of this experiment (STDCE-2) is
scheduled for the Fall of 1995.

The objective of STDCE was to determine the extent and nature of steady-state thermocapillary flow as a
function of heating mode and level, and liquid free-surface shape. It demonstrated the existence of microgravity
steady-state thermocapillary flow in a 10 cm diameter chamber for both flat and curved surface shapes when
heated by either an electric heater or a CO, laser beam (Figure 1).

The objective of STDCE-2 is to determine the onset conditions for and nature of oscillatory thermocapillary
flow as a function of heating mode and level, liquid free-surface shape, and container size. For STDCE-2 the
10 cm chamber is replaced by three chambers of 3.0, 2.0, and 1.2 cm in diameter.

To fully accomplish the science objectives, three parameters must be monitored: surface temperature distribu-

tion, bulk fluid flow, and surface deformation. Both STDCE and STDCE-2 monitor the surface temperature
distribution with a HgCdTe thermal imager. And, bulk fluid flow is monitored by observing the motion of

Vel. 00§, 7993



tracer particles (which have been wniformly mixed into the fluid) as they move through a sheet or beam of light.
But, while STDCE had no means for measuring surface deformation, STDCE-2 will (Figure 2).

A deformation measuring capability has been added to STDCE-2 because current research indicates that both
steady-state and oscillatory flow states produce deformations of the air/oil free surface. Additionally, it is
hypothesized that there is a coupling between oscillatory flow type and deformation shape, velocity flow, and
surface temperature field. Depending upon the experimental conditions, steady state flow produces two
characteristic steady state surface deformations: a "Pimple’ (bump), and 2 'Dimple’ (bole). Oscillatory flow
occurs with either pimples or dimples and produces both standing wave and rotary surface deformations.

3.0 EVALUATION OF ALTERNATIVES

The purpose of this project is to design, build, calibrate, and fully characterize one of more non-contact (i.e.
optical) prototype instruments for measuring the surface deformation of an air-oil free-surface under the
influence of a localized thermal load (i.e. CO2 laser beam or electric heater) which can be integrated into the
anticipated re-flight of the Surface Teasion Driven Convection Experiment (STDCE-2). While initially these
measurements will be performed in a laboratory environment, the instrument must be capable of operating in a
Space Transport System (STS) environment for the United States Microgravity Laboratory flights USML-2.

Becsuse the surface is a fluid, it cannot be contoured mechanically. It must be contoured optically. There are
two ways to measure & two-dimensional reflective surface: interferometrically or geometrically. For most
optical applications, interferometers are generally preferred to geometrical tests. They are more accurate and
sensitive. And, because they measure a surface’s shape while most geometrical tests measure a surface’s slope,
they are easier to interpret. Unfortunately, because the anticipated surface deformations are on the order of 100
pm, conventional visible interferometry is not practical. The fringes density will be too great for the camera to
resolve. One solution to this problem is to use an infrared interferometer, but such a technique might interfere
with the localized heating process. Therefore, a geometrical technique is required.

Because geometrical techniques measure the surface’s slope instead of its height, they have specific advantages
and disadvantages. They are insensitive to tilting of the free-surface cause by G-Jitter. But, they require two
_orthogonal data sets in order to reconstruct its shape. These two data sets can be either x-slope and y-slope or
r-slope and 6-slope. Whether two data sets are truly required depends upon whether the surface is rotationally
symmetric. If the surface is rotationally symmetric, then it may be possible to satisfy the mission’s science re-
quirements with just x-slope or r-slope. But, if the surface is non-rotationally symmetric, then it is necessary to
acquire two orthogonal data sets. Unfortunately, the surface deformations observed in the laboratory are not
rotationally symmetric. But, a unique feature of these deformations which may eventually lead to a simple
solution is that their outer edge is at a constant height.

Many classical geometric test techniques (Foucault knife-edge test, wire test, Hartmann screen test, Ronchi test,
etc.) were considered. Of these, three which provide data over the entire aperture were selected for further
evaluation: Ronchi grating, Hartmann test, and Projected grid.

In the projected grid approach, a linear or crossed grid pattern ié placed directly in front of an extended lLight
source (illuminated diffuser screen). This pattern is then imaged onto the reflective sample surface. The
reflected wavefront is re-imaged by another optical system onto the video camera. The projected grid approach

was eliminated because it lacked seasitivity, dynamic range, and flexible spatial sampling.

In the single-channel Ronchi grating test, a collimated beam of light is reflected off of the sample surface
(Figure 3). The reflected wavefront is focused through a grating to form a Ronchigram which is imaged onto a
video camera. The Ronchi approach has many advantages. By selection of the grating spatial frequency, it has
variable sensitivity and dynamic range. By selection of the grating location, it has adjustable spatial sampling.
Unfortunately it does not provide simultaneous orthogonal slope data sets. -



The Hartmann screen test can provide both x- and y-slope information simultaneously. But, it bas limited
spatial resolution. And, for this application, it is not practical because the screen would obscure the upper
surface flow visualization function. An alternative is to use crossed gratings in a Ronchi test. However, the
complex patterns produced are difficult to analyze.

Another way to obtain simultaneous x- and y-slope data is with a two channel Ronchi approach (Figure 4).
With the two-channel Ronchi approach, a collimated beam of light (laser or white) is projected onto the
reflective sample surface. The reflected beam is collected, split into separate x- and y-slope measurement
channels, passed through vertical and horizontal gratings, and projected onto an observation screen for viewing
by a video camera. A two channel Ronchi instrument was demonstrated which simultaneously acquires x- and
y-slope data for an input wavefront 2. Unfortunately, because of packaging, cost, and schedule issues, a two
channel system could not be implemented.

Based upon managerial issues (packaging, cost, and schedule) and science issues (seasitivity, dynamic range,
and spatial sampling) a single channel Ronchi system was selected. The managerial constraints and science
requirements were then iterated, resulting in Table 1.

3
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4.0 THE RONCHI TEST

The Ronchi test is performed by observing the shadow pattern produced when a focused beam of light is passed
through s periodic structure, such as a line grating, which is Jocated either at focus or away from focus a
distance z (Figure 5). If the beam is ideal, the shadow pattern Jooks like the grating. But, if the beam is
deformed, then the pattern is deformed. A Ronchigram is obtained when the shadow pattern is recorded at an
image of the surface under test, such that it is superimposed (*painted’) upon the image. Information about the
surface is obtained by correlating shadow lines with physical locations on the surface. The distance between
adjacent shadows indicates how much the surface slope changes between those two locations. The amount of
slope required to go from one shadow to its neighbor is called the equivalent wavelength. Altemnatively, the
Ronchi test can be though of as a sheared interferogram produced by overlapping diffraction orders.



The performance of the Ronchi system with an amplitude sine grating is completely specified by its equivalent
wavelength:

d

b 2(FH#)

Since the F/# of the measurement beam is fixed by the optical system, everything depends upon grating spacing,
d. This dependance is extremely important. It allows for the measurement seasitivity to be varied on orbit by
inserting into the beam gratings with different spatial frequencies (Figure 6). If the surface deformation is
large, insert a coarse grating. If it is small, use a fine grating.

Accuracy defines the uncertainty of a given measurement. For the current sampling system, the measurement
accuracy is spproximately A, /8. A measurement system can report numbers to an arbitrary precision, but they
may not be accurate or repeatable. The minimum measurable value of a given system is defined to be twice its
measurement accuracy. For the current sampling system the minimum measurable slope is approximately
A\/4. The maximum amount of full chamber slope which the system can measure is determined by how many
shadow lines (fringes) the video camera can clearly resolve in the Ronchigram. For the current sampling
system, the Ronchigram will be limited to approximately 16 lines pairs for a maximum slope of 16 A,,.

Table 2. Performance Summary for F/2.25 System

Grating Grating Accuracy "Minimum Maximum

Frequency Line Space N Slope Slope
[1p/omm) [mm/lp] (/o] (/] [pm/mm] [wm/mm]

0.5 2.0 444.4 55.56 111.11 7111

1.0 1.0 222.22 27.78 55.56 3556

L 2.0 0.5 111.11 13.89 27.78 | 1778

25 0.4 88.89 11.11 22.22 1422

5.0 0.2 44 .44 5.56 11.11 711

L 10.0 0.1 22.22 _ 2.78 5.56 356

5.0 FLIGHT SYSTEM CONCEPTUAL DESIGN

The flight free-surface deformation measuring instrument was designed in six modules (Figure 7): light source,
projection/imaging, polarization, pupil relay, measurement, and camera. Each module overcomes various
engineering and/or packaging challenges while allowing the total system to meet the science requirements. Each
module is designed to be independently assembled and beach aligned before integration into the final system.
And, each module is designed to prevent unnecessary exposure of the crew to light radiation.

5.1 The Oil Surface

The object under test is a free surface of 2 ¢St silicon oil. It has a refractive index of 1.39. And, an irradiance
reflection coefficient of 2.7%. Because of this low reflection coefficient, the source must have at least 10 mW
of power for the video camera to observe the Ronchi pattern. Also, ghost reflections from the optical compo-
pents can obscure the oil surface reflection.



Because the free-oil surface is a specular reflector, it can be treated as a plane mirror. To implement the
Ronchi test, s collimated illumination beam is required. Two illumination geometries were considered: Off-
axis, and on-axis. The on-axis geometry was selected for several reasons. First, it gets the lens closer to the
fluid surface, thus it can accept higher slope errors. Second, it has no off-axis projection distortion or cosine
scaling. And third, it is easy to package. The on-axis geometry requires the beam to travel in two directions
through the projection/imaging module. This can cause ghost reflection problems.

5.2 Light Source Module

The source module provides a collimated beam of light which uniformly illuminates the object under test. This
is sccomplished with a laser diode and a Galilean beam expanding telescope (Figure 8). A laser diode was
sclected because it is a very-bright source capable of surviving the launch. (White-light and LED sources were
also considered.) Coherence is not a factor in selecting a light source. A Galilean beam expander was selected
because it is compact and does not have a spatial filter which could become misaligned during launch. The
beam diameter is defined by the projection/imaging module’s eatrance pupil to be 22 mm in diameter. The
beam is magnified (30X) and truncated to balance uniformity and power.

5.3 Projection/Tmaging Module

The projection/imaging module has two functions: illumination and imaging. Its illumination function
magnifies or de-magnifies the light beam to illuminate the oil surface for each of the three chamber sizes (12
mm, 20 mm, 30 mm). Its imaging function has two requirements: to form an image of the different sized v
surfaces under test at a fixed sized pupil location, and to pass a reflected wavefront with at Jeast 30 ym/mm of
slope without vignetting. The illumination and imaging functions determine the magnification properties of this
module. The vignetting requirement determines its F/#. Packaging issues determines its clear aperture.

The illumination function is accomplished with two AFOCAL leas pairs (Figure 9), an outer pair and ap inner
pair. The outer pair forms a Keplerian telescope with unit magnification. The inner pair forms a Galilean
telescope which is positioned about the outer pair’s internal focus and functions as a pseudo field lens. This
lens provides magnification/de-magnification when it is flipped. To illuminate the 20 mm chamber, remove the
flip lens such that the 22 mm source beam is relayed unchanged. To illuminate the larger or smaller chambers,
insert the flip lens either forward or backward to magnify or de-magnify the beam (Table 3). The final
illumination beam size depends upon the flip lens magnification factor. The flip lens is not symmetric about the
focal point and does not rotate about the focal point.

Imaging of the different sized chambers into a fixed size pupil is accomplished by running the beam backwards
through the system. The Keplerian telescope, without the flip lens, relays an image of the surface in the middle
gized chamber. Inserting the flip lens, the system relays images of the larger or smaller sized chambers. For
proper imaging the surface must be in the front focal plane of the lens closest to the oil. The resultant image
will be in the back focal plane of the last lens of the projection/imaging module. This image is transferred to
the camera module by the pupil relay and measurement modules - forming a Ronchigram.



The projection/imaging module (as well as the pupil relay and measurement modules) must pass 8 maximum
slope of 30 ym/mm without vignetting. This places an F/# requirement on these components. The faster their
F/# the more slope they can pass. Initially, the optical system was designed to fully collect a wavefront
reflected from a 250 gm high, 10 mm diameter spherical deformation. However, this was relaxed because of
packaging and schedule issues. Packaging factors limit the lens's maximum diameter and minimum focal
length. Schedule require them to be commercially available.

The selected components are F/2.25 (90 mm focal length, 40 mm dismeter) achromatic doublets with approxi-
mately 2 waves of spherical aberration at 633 nm. This amount of aberration is acceptable given the magnitude
of the anticipated oil surface deformations. With proper calibration, this error can be removed from the
measurement. Table 4 gives the maximum surface feature and slope which can be image with the current
system. Please note that the 30 ym/mm specification is not satisfied for the 30 mm diameter chamber.

5.4 Polarization Module

The polarization module eliminates ghost reflections and efficiently uses the source’s available optical power.
Since the projection/imaging module is used in both directions and because the oil’s reflection coefficient is
small, ghost reflections from the illuminated optical surfaces can seriously obscure the oil reflection. To
eliminate this problem, the polarization of the beam is manipulated such that the ghost reflections are vertically
polarized and the oil reflection is borizontally polarized. This is accomplished with two polarizers and a quarter
wave plate (Figure 10). The first polarizer defines the polarization of the ghost reflections. The quarter wave
plate rotates the oil reflection polarization by 90 degrees. And, the second polarizer blocks all of the ghost
reflections and passes the oil reflection. To maximize the available power, a polarization beam splitter is used.
All of the source’s vertical light is transmitted into the projection module. And, all of the returning horizontal
Light is reflected into the relay module. A conventional 50/50 beam splitter could be used, but it would throw
away 75% of the available light.



5.5 Pupil Relay Module

The pupil relay module is a unit magnification AFOCAL system. Its primary function is to extend the beam

at a location where the mission specialist can insert the gratings.
owing for gratings to be inserted into parts of
measure bole deformations.

path such that the measurement module is
Additionally, it serves as an
the beam not accessible with the measurement

5.6 Measurement Module

The measurement module allows gratings of different line spacings to be

alternative measurement module all
module. This is required to properly

focused oil reflection forming a Ronchigram. Since the lens F/#'s are known,

changes the equivaleat wavelength.
is independent of where the grating is
pumber of spatial sample points across
grating must be placed at
distance from focus for a given grating depends en

a greater distance from the

The equivalent wavelength

placed in the beam.

g = 10d(F#) = 225d

Table 5§ summarizes the distances needed for each grating to produce 10 lines.

inserted into different locations of the
changing the grating line spacing
depends only upon the grating line spacing and
Grating placement in the beam determines the

the beam. To insure at least 10 sample points pef diameter, a coarse
measurement module focus than a fine grating. The

tirely upon its line spacing:

Table 5. Distance from Focus for Spatial Sample Points

e — —
Ff;f;ﬁy Lg?g;fu Z for 10 Samples | Z for 15 Samples | Z for 20 Samples
[lp/mm] [mm/lp] per Diameter per Diameter per Diameter
0.5 2.0 45.0 mm 67.5 mm 90.0 mm
1.0 1.0 22.5 mm 33.75 mm 45.0 mm
2.0 0.5 11.25 mm 16.88 mm 22.5 mm
2.5 04 9.0 mm 13.5 mm 18.0 mm
5.0 0.2 4.5 mm 6.75 mm 9.0 mm
_E.O 0.1 2.25 mm 3.375 mm 2.5 mm
To reconstruct & two-dimeasional surface contour, separate horizontal and vertical gratings,

can be inserted into the beam. Radial or circul

5.6.1 Fill Level Indication

Silicon oil has a very low surface tension
the container, the rim of the chamber has a
the container is filled in low gravity, the liquid
the surface will be flat.
point of the measurement module, direct vi
Specialist. When the oil surface is not flat, there is a line pattern. As the ol approaches a flat surface, the
fewer lines) until all the lines disappear when the
lines will reappear and increase in aumber.

pattern spreads out (has
under or overfilled, the

If over-filled, the surface will form a
sual evidence of the oil’s

and spreads easily
sharp edge that 'p
will form a deep spherical curvature.
spherical dome. By placing a grating at
surface state is provided to the Mission

ar zone gratings may be tried.

on any surface. To preveat it from flowing out of
ins’ the oil in place and is 'barrier’ coated. As
When completely filled,

surface is flat. If the container is

or crossed gratings



5.7 Camera Module

The Ronchigram produced by the measurement module is imaged onto a diffuser plate where a real image is
formed. This image is viewed by a video camera and recorded on video tape for subsequent (post-flight) data
analysis >. The physical distance from the diffuser screen to the camera is determined by the focal length of the
camena lens, the camera sensor format, and the size of the image on the diffuser screea:

d = [l + ':‘_.mlf—nl-

For the flight system, the diffuser image radius is 10 mm, the sensor radius is 2.2 mm, and the camera lens
focal length is 28 mm. Thus, the stand-off distance is 155 mm. The camera is a 1/2 inch format RS-170 video
camera.

In addition to being able to spatially resolve the surface feature without vignetting, the system is required to
temporally resolve the oscillation. It is assumed that the period of this oscillation is on the order of 2 to 5
seconds. Thus, & standard video camera with a 60 Hz field rate is adequate. Finally, it is assumed that there
may be high-speed temporal gitter in addition to the lower-speed temporal oscillation. This gitter could reduce
the contrast of the pattern. To eliminate gitter the camera will need a high speed shutter and the source will
need sufficient output power to expose the camera.

6.0 CALIBRATION

If the optical system were aberration free, the Ronchigram of an ideal flat mirror would be a series of perfect
straight lines. However, given the total number of positive optical components in the optical system, such a
pattern is impossible. By measuring the beam reflected from a 'perfect’ reference-flat insert, after assembly,
these errors can be characterized and removed from all measured data. Additionally, the system can be
calibrated by testing a series of known diamond-turned test plate samples.

Calibration of the prototype instrument was accomplished by measuring a known amount of defocus aberration
introduced by translating the collimating leas:

&

8 (F1#)?
where: €, = Longitudinal Aberration

Wz

The result of this calibration gives a measurement accuracy of approximately + 10%. Measurements made on
the known test samples confirm this result. .

The system is designed for the insertion of interchangeable gratings at various locations in the beam. Thus,
grating alignment errors can be a problem. To assess this, the data analysis process has been evaluated for its
seasitivity to efrors in the position of one grating relative to its orthogonal partner. In general, the Ronchi test
is relatively insensitive to small grating placement efrors (except for translation along the surface normal®) for
grating frequencies less than 3 to 5 lp/mm.

7.0 CONCLUSIONS
A prototype Ronchi instrument to monitor steady-state and oscillatory deformations, and fluid fill level of a free-

surface of oil has been developed, demonstrated, and characterized for STDCE-2. A single~channel Ronchi
configuration has been selected as the flight instrument. The flight instrument is currently being designed.



The Ronchi test is a shearing interferometer. The number of sheared wavefronts and the magnitude of the shear
is dependant upon the characteristics of the grating. The fringe spacing (equivalent wavelength) in a
'Ronchigram is proportional to the spacing of the grating and the F/# of the test beam. The dynamic range and
sensitivity of the Ronchi test can be changed by simply changing the grating spacing. The prototype two .
channel Ronchi system bas an accuracy of + 5%. For a shearing system, the maximum measurable error is
determined by the surface curvature.
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Figure 3. Single Channel Ronchi Test.
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Figure 5. The Ronchi Test.

Figure 6. Measurement of a 25 micrometer bump with three different gratings at a fixed distance z from
focus producing three different equivalent wavelengths.

Figure 7. Schematic Diagram of the Flight System
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Contouring of a free oil surface
William S. Meyers and H. Philip Stahl

Rose-Hulman Institute of Technology, Department of Physics and Applied Optics
5500 Wabash Avenue, Terre Haute, Indiana 47803

ABSTRACT

Anon-comac((Laopﬁcabwchniqmismqniredwmwmemcdefmnaﬁonohﬁeeoﬂaﬂm
under the influence of a localized thermal load. This deformation is caused by surface tension driven thermal
convective flow inside the fluid, and can be as large as 250 micrometers. Therefore, conventional interferometry
is not possible. Instead, a Roochi technique is proposed for contour mapping the oil surface. This paper presents
atwochannclRonchiinswmmnmdmeprdimmaxymﬂmﬁomﬂwandysisofmoasphakmfwe&adimmd
machined metal surface and the free oil surface.

1. INTRODUCTION

Scientists at Case Western Reserve University and NASA Lewis Research Center are conducting research
on a variety of fundamental phenomena inherent in low gravity processes. One phenomenon being studied is
thermocapillary flow, or fluid flow driven by surface tension. Thermocapillary flows result when temperature
differences arise across a liquid/gas interface. These differences cause a change in the surface tension along the
interface, which results in thermocapillary flow. Improvements in the understanding of thermocapillary flow may

_lead to technological breakthroughs in the space processing of semiconductor crystals. These experiments were a

v

part of the 13-day Microgravity Laboratory (USML-1) shuttle mission in the summer of 1992. The experiment
described in this paper was not on that mission, but may be included on future shuttle missioas.

One of the parameters of thermocapiliary flow to be studied is the ability of the free surface to deform
during flow. The development and implementation of a non-contact (Le. optical) method to monitor these surface
deformations as a function of experimental parameters such as fluid properties, heating modes, is crucial to the
understanding of the physics of thermocapillary flow.

The experimental surface is a three centimeter diameter pool of silicon oil. Deformations as large as 250
micrometers are produced on the surface of the oil by thermocapillary flow. An optical technique instead of a
mechanical technique was chosen to contour the free surface because touching the surface with a mechanical probe
would deform the surface even more. There are two basic categories of optical techniques: geometric and
interferometric. A geometric method measures surface slope, while an interferometric method measures surface
height. The geometric approach was chosen over the interferometric technique for two reasons. First, conventional
visible wavelength interferometry would produce a fringe pattern t00 dense to analyze because of the anticipated
deformation range of up to 250 micrometers. And, while infrared intcrferometric techniques could produce a
resolvable fringe pattern, the infrared beam might affect the system’s thermal loading. Second, geometric techniques
are dependant on the slope of the surface and are therefore insensitive to any jitter ar tilt experienced by the oil
surface while in space. One disadvantage of using geometric techniques is that two orthogonal data sets, either x-
slope and y-slope or r-slope and ©-slope are needed to completely reconstruct the surface shape.

Five classical geometric techniques were considered: Foucault knife-edge test, Hartmann screen test, wire
tests, grating interferometry, and Ronchi test. The knife-edge and wire tests were not chosen because they provide
data for only a single zone or diameter, not far the entire aperture. The Hartmann screen can provide two orthogonal
dalasetsatonetime,butilhasﬂinﬁtedspaﬁalresolutionwhencompm'edwiﬂl(heRmchilcsL The Ronchi test
was chosen as the technique to use for three reasons: the small dimensions of the experimental pool are tailored to
the Ronchi requirement of a collimated beam, the Ronchi data is less complicated to analyze, and it can be integrated
with phase-measuring techniques.
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2. BACKGROUND
2.1 Relevant work

The Roachi test was discovered by Italian physict

Vasco Ronchi in 1921, Ronchi was atiempting to measure Collimating Lens
the radius of curvature of a concave spherical mirror. Upon N Tost Surface
looking through the grating at the mirror, the surface defects D—D{ xlyDd
of the mirror became apparent. The miror surface appeared Leser Spstial Filter T
lmedwnhtwmedandmgnhrfmg&' Since its . -f
emwepﬁon.thekwhiulnsbeeu:ppliedtodw
measurement of the aberrations or defects in many different Collecting Lers
applications and using many different test setups.

A single channel Ronchi test is shown in Fig. 1. Gretig - m"L

A collimated wavefront is incident upon a test surface. The

reflected wavefront contains information about the surface

contour. The collecting lens focuses the wavefront onto a Observetion Screen
Ronchi grating. The irradiance pattern produced on the

observation screen is a sheared interferogram called a

Ronchigram, where the imadiance across the pattern is

ional to the siope of the test surface in the direction } . .
proponcjlicu]artomc;ieﬂngl fure. Figure 1 Single channel Ronchi test

3. RONCHI THEORY
3.1 Linear system theory

The Ronchi test can be thearetically explained as either a geometric ray or an interferometric test. From
a geometric ray point of view, the fringesina Ronchigram are the result of the deviation of a ray from its ideal path
because of slope errors. In an interferometric test the fringes in the Ronchigram are produced from the interference
between overlapping diffraction orders. The overlapping wavefronts are produced by a shearing of the original
wavefront. Therefore the Ronchi test can be approached as a sheared wavefront interferometer,

'4— f :}: f ol Z—O-l

|
|
|
Incident
Wavefront
6
ulxl,yb Co}_lznc;lng T U2y U3y
- Grating Observation
Figure 2 Ronchi linear system theory Screen

The basic funcdonofdwkmchimunbcexplainedfranalimarsys:cmdwypoimofviewusinglhc
geometry shown in Fig. 2. The wavefront reflected off of the test surface, u(x,.y,). contains information about the
surface contour. The wavefront observed at the focus of the lens, directly before the grating, is the Fourier transform
of the input wavefront ) )

1
U(E,."Iz) = ﬂ“(xl-y|)] )



After the grating, the wavclront is modulated by the grating transmission function, t(x2.y2).

‘((fzy;) hd U({r']z) '(iz\)’g)

X, Y, (¥))

¥(xXyYy = U U) t(x’g-)f;)

. At the observation screen, the wavefront amplitude is the Fourier transform of the wavefront at the focal
plane of the lens.

w5y = FWET )

(x,y)) = .910(—,}% LAY

The wavefront at the observation screen is a scaled version of the incident wavefront, v, , convolved with
the Fourier transform of the grating transmission function.

fx; fy;) 5% &)

)

u(xyy,) = W — e

+ I

When the distance z ( distance from the grating to the observation screen ) is equal to the focal length of
the collection lens, the wavefront scale factor disappears and equation 3 is the original wavefront convolved with
the Fourier transform of the grating transmission function. The grating transmission function is the important .
mechanism in the Ronchi test.

The irradiance at the observation screen is given by:

(C))
E(x,yy) = <lu(x,y) >

32 Square wave grating

The type of grating used in the Ronchi test determines the interpretation of the fringes in the Ronchigram.
A square wave grating was used in this experiment. A square wave grating is a series of transparent and opaque
straight line bands. The Fourier transform of a squarc wave grating is a sinc function convolved with a comb
function. The square wave function and its Fourier transform are shown in Fig. 3.

When the width of the bands in the square )
wave grating is equal to one half of the grating period, I ] r_l
the even orders of the sinc function are missing. If the i b

contributions of the higher odd orders ( 3, 5, 7, ..) arc

B> IO BRI R I )

Figure 3 50/50 Duty cycle square wave graling



assumed to be ncgligible, the Fourier transform of a square wave grating can be approximaled as three delta
functions. Plugging this result into equation 3 gives the wavefront at the observation screen for a square wave
grating with a 50/50 duty cycle.

O | R B S SRR I SN ]
Uxy, y)) = Mg 4 U, b U u(h) & dp u(u(x, d)

Equation § is of the same form as the general equation for a lateral shearing interferometer.?

W(x-%.y)-wu+%.»-mz @

The A in equation 6, referred to as the shear distance, is the distance between the centers of the wavefronts.
Figure 4 shows a schematic of the shearing effect of the square wave grating.

y3
%X Ronchigram
- > x3

u, u u

Figure 4 Sheared wavefronts

The imadiance at the observation screen is given in equation 7. Just as in & shearing interferometer, the
interference fringes in the Ronchigram are produced in the overlap region of the laterally sheared wavefronts. These
overlapping regions are expressed in the irradiance equation as the cross terms in parenthesis.

E(x, y) = E, + Ey + E, + (ugty + uju) + (. + uju) s (uu + uyu) ™

There are three fringe patterns produced in the Ronchigram, the interference between wavefronts (ab), (ac), and
(b.c). Given our setups coarse gratings (50 p/in), the actual shear distance is very small. The observed irradiance
(Ronchigram) is produced from the overlap region of all three wavefronts.

3.3 Equivalent wavelength

In interferometry, the fringe spacing in an interferogram is proportional to the wavelength of light used in
the interferometer. The imradiance at any point in an interferogram, E(x.y), can be expressed as a function of
measurement wavelength and optical path difference (OPD) between the two interfering wavefronts.

2!OPD» )

E(xy) = Ef1 +
wherel-nwmuremnrmlmgth



The OPD in a shearing interferometer is given by the difference between the wavefront and the sheared wavefront.

OPD = Wixy) - W + Axy) = AWx) ®)
where A = shear distanc

The relationship between the differential wavefront and the slope of the wavefront is shown in equation 10.

AWxy) = 8—";—(:"—)& = a(xy)Ax (10)
where a(xy) = wavefront slope

Inserting equation 10 into equation 8 gives the irradiance equation for a shear interferometer. This is also
the irradiance equation of a Ronchi test, since the Ronchi test is similar to a shearing interferometer.

2xaAx (11)

E(xy) = E(1 + cos( 3 )

The equivalent wavelength, A, of a shearing interferometer is defined as the measurement wavelength
divided by the shear distance.
i (12)
lq = E
Inserting the equivalent wavelength definition into equation 11, the irradiance equation can be rewritten as equation
13.
13
Etxy) = E(1 + cos(22%) W
lq

Thus, by proper scaling of the interferogram, conventional interferogram analysis techniques will provide a direct
measurement of the wavefront slope.

33.1 Equivalent wavelength (Square wave grating)

In order to derive an equivalent wavelength for a square wave grating with a 50/50 duty cycle the dominant
fringe pattern in the Ronchigram has to be determined. The shear between wavefronts (a,b) and (ac), in Fig. 4, is
dominant over the shear between wavefronts (b,c) for two reasons. First, the intensity of the wavefront u,, the zero
diffraction order, is much higher than the intensity of the other two wavefronts. Second, the fringe pattem produced
from (a,b) and (a,c) are identical and they overpower the fringe pattern produced from (b.c).

The shear between wavefronts (a,b) and (a.c) is identical and is equal to

g - ay
ax d



The shear distance is normalized by dividing the shear by the beam radius. Normally. the beam radius is
equal to the radius of the collection lens because the lens pupil is over filled and the distance z is cqual to the focal
length of the collection optics.

Ax = A% 2¥
X D

Substituting the normalized shear into equation 12, the equivalent wavelength for the Ronchigram produced from
(a.b) and (ac) is

Y s
“

The fringe spacing in the Ronchigram is independent of the measurement wavelength. It is only dependant
upon the spacing of the grating and the f/# of the test beam. This means that the Ronchi test can be performed with
cither a monochromatic or white light source. In addition, the sensitivity of the Ronchi test can be changed by

simply changing the grating frequency.
4. TWO CHANNEL DESIGN

In order o reconstruct the surface contour, two orthogonal slope patterns, either x-slope and y-slope or r-
slope and 8-slope, are required. A single channel Ronchi test can be used 10 characterize a static surface by rotating
the grating 900 during the experiment to obtain two orthogonal slope patterns. The oil surface is a dynamic surface
and requires that two orthogonal slope patterns be obtained in real time. A two channel Ronchi test has two separate
arms, one with a vertical grating and one with a horizontal grating. The two channe! test can produce two orthogonal
slope patterns in real time.

4.1 Optical layout

A schematic of the two channel Ronchi test is shown in Fig. 5. A collimated wavefront is incident on the
oil surface. The wavefront reflected off of the surface contains information about the surface contour. The reflected
wavefront is split and directed through two separate channels. One of the wavefronts is focused onto a horizontal
grating by collecting lens, L3, producing a Ronchigram with vertical slope information. The other wavefront is
focused onto a vertical grating by collecting lens, L2, producing a Ronchigram with horizontal slope information.
The two channels are staggered so that the distance from the oil surface to each collection lens is equal. The
wavelronts leaving lenses 14 and L5 are positioned side-by-side on an observation screen.

. .
s BS ! N3
;
L2 Vertical u
Qnating
- M4
M |
L1 L3  Horlzomal LS
Grating
Spatial Pilter
Ml Laser Observition Screet
& - b i iy ﬁ

Figure 5§ Two channel Ronchi test



4.2 System (/%

The surface under test should be located in the front focal plane of the collection optics. The maximum
surface slope that will enter the collection lens of the Ronchi test is dependant upon the {4 of the collection lens.
From the geometry shown in Fig. 6, it is clear that the f/# requirement o see a given slope is.

Lo 1 (16)
£ 2 wtnQea)

A graph of the system {/# required for a given surface slope is provided in Fig. 7. The two channel Ronchi test
designed for this experiment is a {44 system. Therefore a surface slope of up to approximately 60 pm/mm will enter
the two channel Ronchi test  The maximum expected slope of the oil surface is 26.7 pm/mm.

F-number Requirements

“for surface slope”
2
T A
% 0/2 18 \ —
’ 2K _J_ 16 . \\
| S ' .
t f é 14 \
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lqs - 8 \\
5 \
NTE T Ot H H P 5 @ & %
Surface Siope (Lmvmm)
Figure 6 System geometry Figure 7 System {/# requirements

4.3 Grating frequency selection

One of the advantages of the Ronchi test is that the dynamic range and resolution of the system are
dependant on the characteristics of the gratings and the f/# of the system not the measurement wavelength, Therefore
a simple change of the gratings will permit a different range of deformations to be monitored. This gives the Ronchi

system great flexibility.
The proper grating spacing, d, for a given maximum surface slope can be found using equation 17. To

enhance data evaluation, the optimum number of fringes per pupil radius is 10 fringes. Fewer fringes would reduce
the accuracy and more fringes may introduce additional complexity.

d-2f¢_u an

m
where f =focal length, a_,, = maximum® surface slope and m = fringes per radius.



5. TWO CHANNEL CALIBRATION
5.1 Calibration experiment

The two channel Ronchi test was calibrated by testing a known amount of introduced defocus. The defocus
was introduced by translating the collimating lens, L1, in Fig. 5. Defocus was chosen to calibrate the system for
three reasons: 1) It is easy to introduce. 2) It is easy to analyze. 3) The amount of defocus introduced is directly
proportional to the magnitude of the translation. Three different frequency square wave grating were used in the
experiment. Each of the different gratings has a different equivalent wavelength and will therefore provide a test
of the equivalent wavelength equation for square wave gratings with a 50/50 duty cycle. Table 1 is a listing of all
the trials ran in the calibration experiment.

n . Table 1 Listing of Trials la Two Channel Calibration Experiment
Trial Gnating  Frequency Equivalent Wavelength Translation Defocas
[ip/in] [micrometers] [mm) [Waves)
1 250 12.10 ) 20 1.045
2 250 12.10 30 1.623
K 250 12.10 40 2237
4 250 12.10 5.0 2.903
5 150 20.16 7 30 0.950 )
6 150 : 20.16 45 1.509
7 150 20.16 60 2.049
8 150 20.16 15 2588
9 50 60.48 55 0.650
10 50 60.48 80 0.882
11 50 60.48 95 1.076

5.2 Ronchigram analysis

The two channel Ronchi test produced two Ronchigrams for each trial. These Ronchigrams were of
orthogonal slope patterns, x-slope and y-slope. Each slope map was digitized and fit to a set of Zernike polynomials.
The two slope maps were then combined to produce the original surface contour by linear combinations of the
Zernike polynomials.’ }

53 Calibration results

Figure 8 is a graph of the data shown in Table I. The trials for each grating frequency demonstrate a linear
relationship between the amount of lens translation and the amount of introduced defocus. Multiplying each defocus
value by the appropriate equivalent wavelength value produces the result shown in Fig. 9. All the trials fall upon
the same line. The equivalent wavelength equation does relate data taken with different grating frequencies.

Figure 10 shows the percent error between the data and the best fit line shown in Fig. 9. The average
percent error of the current two channel system is $£5%. The percent ermor for small amounts of defocus is higher
than five percent. It is speculated that this is because of the inaccuracy involved in placing the gratings at best focus.
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6. PRELIMINARY DATA

The equivalent wavelength equation needs 10 be modified when the test object is a surface_ iqs(cad of a
wavefront as in the case of the two channel calibration. The cosine of the reflected angle is multiplied by thc
denominator of the equivalent wavelength equation. Whea the reflecied beam is normal (o the test surface equation

15 is the proper scale factor (cos (0) = 1).
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6.1 Diamond machined known surface

A diamond machined aluminum surface was examined with the two channel Roachi test. The surface was
machined flat except for a 5§ mm diameter area in the center of the surface. This central area contained a 54
micrometer depression. A Ronchigram of the surface and a contour map of the surface generated from the
Ronchigram information are shown in Fig. 11. The two channel system measured the depression to be 52.442.6
micrometers. The area around the depression is flat.

6.2 Oil surface

The oil surface usually has either a depression or a bump at the location the CO, beam strikes the surface.
The size of the feature can be changed as well as the polarity by adjusting the size of the incident CO, beam and
the laser power Jevel. Fig. 12 shows the Ronchigrams and a contour map generaled from the Ronchigrams for a
bump on the surface. The CO, beam size on the surface was 6 mm. The two channel system measured the bump
to be 1711 micrometers.

Figure 11 Diamond tumed surface . Figure 12 Free oil surlace



7. CONCLUSIONS

The Ronchi test can be treated as a shearing interferometer. The number of sheared wavefronts and the
magnitude of the shear is dependant upon the characteristics of the grating. The fringe spacing in a Ronchigram
is proportional to the equivalent wavelength of the Ronchi system. The equivalent wavelength is dependant upon
the spacing of the grating and the {/# of the test beam. The sensitivity of the Ronchi test is both known and variable.
It can be changed by simply changing the grating spacing.

The two channel Ronchi system was calibrated and has an accuracy of +5%. The preliminary data
demonstrates the ability of the Ronchi test to contour an aspheric surface.
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ABSTRACT

A non-cootact (i.e. optical) technique is required to measure the deformation of a free oil surface under the
influence of a localized thermal Joad. This deformation is caused by surface tension driven thermal coovective flow
inside the fluid, and can be as large as 250 um. Therefore, conventional interferometry is not possible. Instead, a
Ronchi technique is proposed for contour mapping the oil surface. This paper presents a design concept for a two
channel Ronchi instrument snd some preliminary results from a feasibility study using a single channel Ronchi
instrument.

1. INTRODUCTION

Scientists and engincers at Case Western Reserve University and NASA Lewis Research Center are
conducting research on a variety of fundamental phenomena inherent in low gravity processes. An important
phenomenon cousidered o have a significant impact on processes such as containerless processing and crystal growth
is that of thermocapillary flow, or fluid flow driven by surface tension. Thermocapillary flows result when
temperature differences arise across a liquid/gas interface. These differences cause a change in the surface tension
along the interface, which results in thermocapillary flow. Improvements in the understanding of thermocapillary
flow will belp lead to technological breakthroughs in space processing of semiconductor materials.

The ability of the free surface to deform during thermocapillary flow is an important aspect of this problem.
These deformations can alter the surface temperature distribution, the driving force in the flow, and the resulting fluid
flow patterns, causing an unsteady flow which is detrimental to the crystal growth process. Therefore, the
development and implementation of a technique to study the surface deformation as a function of experimental
parameters such as fluid properties, heating modes, is crucial to the understanding of the underlying physics.

This paper describes the design of a technique for measuring surface deformations of a 3 cm diameter pool
of silicon oil. Since the surface is a fluid, touching it would change its shape. Therefore the technique must be noo-
contact, i.e. optical. Two techniques were considered: geometric and interferometric. A geometrical technique
measures surface slope, while an interferometric technique measures surface height. The geometric approach was
chosen over the interferometric approach for two reasuns. First, conventional visible wavelength interferometry
would produce a fringe pattern too dense to analyze because of the anticipated deformation range of up to 250
micrometers. And, while infrared interferometric techniques could produce a resolvable fringe pattern, the infrared
beam might affect the system’s thermal loading. Second, geometric techniques are dependant on the slope of the
surface and are therefore insensitive to any jitter or tilt experienced by the oil surface while in space. One
disadvantage of using geometric techniques is that two orthogonal data sets, either x-slope and y-slope or r-slope and
©-slope are needed to completely reconstruct the surface shape.

Five classical geometric techniques were considered: Foucault knife-edge test, Hartmann screen test, wire
tests, grating interferometry, and Ronchi test. The knife-edge and wire tests were not chosen because they provide
data for only a single zone or diameter, not for the eatire aperture. The Hartmann screen can provide two orthogonal
data sets at one time, but it bas a limited spatial resolution when compared with the Ronchi test. The Ronchi test
was chosen as the technique to use for three reasons: the small dimeasions of the experimental pool are tailored to
the Ronchi requiremeat of a collimated beam, the Ronchi data is less complicated to analyze, and it can be integrated
with phase-measuring techniques.
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2. BACKGROUND

The Ronchi test was discovered by the Italian physicist Vasco Ronchi in 1923. He noticed that when a
grating was positioned near the ceater of curvature of a mirror that the image of the grating was superimposed upon
the original grating. The combination of the two gratings produced a moire type effect whose patiern depended upon
the aberrations of the mirror. Ronchi felt that this method was a good check for mirror quality.'

B The propertics of the Roochi test can be
understood by examining the single channe! Ronchi
setup shown in Fig. 1. The source in Fig. 1 is a "point
source” created by spatially filtering a HeNe (A = 632.8
nm) laser beam. A lens is positioned one focal length
in front of the spatial filter, producing & collimated
beam of light The collimated wavefront is incident
upon the test surface and reflected to an achromatic
imaging lens. The reflected wavefront contains
information about the surface deformations. The
imaging lens focuses this wavefront onto a Ronchi
grating. The irradiance pattern produced on the
observation screen is a sheared interferogram called a
Ronchigram, where the irradiance across the pattern is
proportional to the slope across the test surface.

Figure 1 Single channel Roachi test

The Roachi test measures wavefront aberrations present in a system. Therefore, if there are no aberrations,
the Ronchigram will have no fringes. When the test surface in Fig. 1 is a planc mirror no aberrations are introduced
into the collimated wavefront. Therefore, if the grating is at the focus of the imaging lens, either a bright spot or
a dark spot is produced on the observation screen. A dark spot indicates that the focused beam is incideat upon a
darkbandinthegmingmdabdghtspotindicuesdmthefowsedbeamisincidcutuponmamabetweentwodark
bands in the grating. Now, if the grating is moved away from the focal plane of the imaging lens, defocus is
introduced. Defocus appears as straight line fringes in a Ronchigram.

When the surface is aberrated, the Ronchigram contains fringes which are proportional to the slope of the
surface. Since the Ronchi test measures the wavefront’s slope in a direction perpendicular to the grating lines, it
is necessary to obtain two orthogonal patterns to fully represent the surface shape.

3. CERTIFICATION OF A SINGLE CHANNEL RONCHI TEST

For any measuring instrument, it is necessary to develop a certification technique. For the Ronchi test, this
can be accomplished by introducing a known amount of aberration and thea testing to see if that amount is actually
measured. In this section, a certification process using defocus is discussed.

3.1 Theory

An ideal spherical wavefront is one which will produce a perfect point image at its focal point. Such a
wavefront is described by,

xz + y2
X, =
w(x,y) 3R
where (x.y) are pupil coordinates, and
R is the wavefront radius of curvature.
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If the wavefroat is defocused by an amount Aw(x,y),
@)
w/(xy) = w(xy) + Aw(x)y)

it will focus at a slightly different location, R+€,, where ¢, is called the longitudinal ray aberration. The wavefront
error introduced by defocus can be described by,

Aw(xy) = W, (x? + y?) 3)
where wy, is the Defocus coefficient.

Figure 2 shows a reference wavefront and an aberrated wavefront with a profile function of W(x,y). The longitudinal
aberration, €,, and the transverse aberration, €,, are also shown. The slope error, @, is the angle between the
intersection of the reference wavefront and the aberrated wavefront surface normals. The slope error is equal to the
partial derivative of the profile function W with respect to y. 7
gV @
ay

--------- Reference Wavefront

—— Aberrated Wavefront
W(xvY) i y

L,

r = pupil radius R = radius of curvature
x, y = pupil coordinates '
ez = longitudinal aberration

ey = transverse aberration

« = slope error

Figure 2 Comparison of reference and aberated wavefronts

Usingsimilarn'ianglesmdd)cmllmgleapproximaﬁonitmbcsbownﬁomﬁglthat

R
€, =aR & =—& (5)

where r = pupil radius.



Since Ronchigrams are in normalized pupil coordinates, it is necessary to normalize x, y, and @
s =X ya2 .-l ©
r r r oy’
where r = pupil radius and (x',y’) = normalized pupil coordinates.

Bywbstimtionofequationslmd6imo5.d:elongimdinalundmsverseabetndonsunberewrinenas:

W Rw ™
’ oy Ty

L RW R W ®
y —r_T T 7‘5"57

Taking the partial derivative with respect to y of the defocus term in equation 3, writing it in pormalized pupil
coordinates, and substituting it into equation 8 yiekds equation 9.
R? 9

A = -2 Wy —
. r2

The f-number of the system, (£/#), shown in Fig. 2 is the radius of curvature of the reference sphere divided by the
pupil diameter (2r).
10)

£ N

R
2r
Substituting the f-number into equation 9 provides an equation for the defocus in a wavefmnt that is dependant only

upon the amount of longitudinal aberration and the system f-number.

- e -
W = f' an

Thus, by simply translating the Ronchi grating, a known amount of aberration can be introduced.

3.2 Measuring defocus

The number of fringds in a Ronchigram is related to the partial derivative of the wavefront aberration’.
oW md

N a2
where R = radius of curvature m = number of fringes per radius,
and d = grating spacing.

Writing equation 12 normalized pupil coordinates gives:
oW __mdr (13)

————

> R



Taking the partial derivative of the defocus term in equation 3 and writing it in normalized coordinates yields:

aA;:::.y) -2 Wy, )
Setting the right sides of equatioas 13 and 14 equal and substituting in the definition of the f/# (equation 10) results
in the following relation:

g, = -4 as
4y
#
Thus, the amount of defocus in the wavefroat can be determined by counting the number of fringes per pupil radius
in the observed Ronchigram. :

3.3 Certification experiment

The single channel Ronchi test shown in Fig.

1 was certified by testing a known amount of
introduced defocus. The grating was initially placed in
the focal plane of the lens and its position was recorded
for a reference value. The grating was then displaced
& £ a known amount towards the lens and the output fringe
iR ; pattern was photographed. An example defocus fringe

- is shown in Fig. 3. Translating the grating is
equivalent to introducing longitudinal aberration, &,
into the system. The number of fringes can be
determined directly from the photographs for each
translation. ‘The experiment was performed with
different frequency gratings and different grating
orientations to insure that equation 15 was correct and
to get a visual feel for the effects of using different

gratings.

. . Table 1 presents the experimental data for

' : various translations and grating frequencies. Equation
Figure 3 Defocus fringe pattem 11 was used to calculate the value of defocus from a
known amount of transl.tion. Equation 15 was used to
calculate the value of defocus from an observed number of fringes. The difference between the two calculations is
shown in the defocus difference column in Table 1. The reason that there are two different values for the f-pumber
isbecauscaporﬁonofthedauwastakenwithmemﬁngind)evaﬁcnldirwtionmdaponion was taken with the
grating in the horizontal direction. The elliptical beam produced by the test surface, which is orieated at 45°, results
in two different f-oumbers’s for the different grating orientations.

The defocus values from the two different methods compare very well. The largest defocus difference is
38 microns. The orientation of the grating and the grating frequency do not seem to have any effect on the accuracy
of calculated defocus values. The results show that the theory is correct and that the amount of defocus can be

accurately calculated.



Table 1 Comparison of Calculated Defocus Values

Trial Grating F-number Transiadon Obecrved Defocus Defocus Defocus
fﬁ““m@) %%183 (ao.o? mm) Fringes Tt:llmdm F?'h?u m?:nf")u
mm {mm)
1 9.843 217 _0.71 4.5 0.019 0.026 0.007
2 9.843 217 1.62 1.5 0.043 0.044 0.001
3 9.843 217 3.60 130 ] 0095 _0.076 0.019
4 9.843 217 492 18.0 0.131 0.105 0.025
3 1960 217 3.16 40 0137 0.117 0.020
6 1.960 217 8.40 6.5 0™ 0.190 0.033
7 1.969 217 142 3.3 0.197 | __0.161 0.036
8 1.969 2.17 10.81 85 __0.287 0.249 0.038
9 3.906 3.08 114 40 0015 I 0027 0.012
10 5.906 3.08 3.78 1.0 __0.050 0.048 0.002
11 5.906 3.08 6.23 12.0 0.082 0.082 0.000
12 5.906 3.08 7.83 15.0 0.103 0.103 0.000

4. TWO CHANNEL DESIGN

In order to fully characterize the surface, it is necessary to measure the surface slope in two orthogonal
directions. The single channel Ronchi system can be used to obtain two orthogonal slope patterns by simply rotating
the grating 90° during the experiment. However this method only works for static surfaces like the plane mirror
presently being used to calibrate the system. Since the pool of oil is a dynamic surface two orthogonal fringe
patterns must be obtained simultancously in real time. A two channe! Ronchi test can produce two orthogonal fringe
patterns in real time.

4.1 Optical layout

s BS .><. M3
L2  vertical L4
QGrating
M4
M2
Horizontal
L1 L3 - LS
Spatial Filter
Drawing not to Scale
M1 Laser Observation Screen
w%l{l)l!{ ') AR e A R R A CACAA =

Figure 4 Two channel Ronchi test



A schematic of a two channel Ronchi test is shown in Fig. 4. The two channel test was designed to fit on
a standard 2’ by 3’ optical breadboard. The space requirements of the optical component mounts are not shown in
Fig. 4, but they were taken into account when parameters such as focal length of the lenses and the diameters of the
elements were chosen.

The source shown in Fig. 4 is a HeNe (A = 632.8 nm) laser. The light emitted by the laser strikes a fold
mirror (M1) and is directed into a spatial filter (SP). The collimating lens, L1, is positioned one focal length away
from the spatial filter, thereby producing a collimated beam of light. The collimated beam or plane wavefront is
incident upon the test sample at 45°. The wavefront reflected off of the test sample contains information about the
contour of the test surface. The reflected wavefront is then divided into two wavefronts by the beamsplitter (BS)
and directed through two separate arms. One of the wavefronts is focused onto a vertical grating by L2 producing
a Ronchigram with horizontal slope information, while the other wavefront is focused onto a borizontal grating by
L3 producing a Ronchigram with vertical slope information. The two slope maps are imaged by lenses L4 and LS5
onto the observation screen. The lenses L1-LS were chosen to be achromats to insure that minimal amounts of
spherical aberration are introduced.

The wavefronts exiting L4 and LS are ﬁositioned side-by-side on an observation screen as pictured in Fig.
4 by the fold mirrors, M3 and M4. Additional optics are required in order to form an image of the two Ronchigrams
onto a video camera.

4.2 Sample and sample mount

’I‘betcstsamplelobeusedinmetwochannclRonchiaempwasdesignedandmanufacturedby
undergraduate mechanical engineers and applisd optics students at Rose-Hulman. It was designed to simulate the
free oil surface. Three criteria were used in the design of the test sample: the surface must be 3 cm in diameter,
it must be capable of creating both odd and even deformations, and it must be large enough to insure that stress
fringes from its mounting do not overlap with experimental deformation fringes. The test surface is a circular piece
of plexiglas mounted between two metal rings. The back metal ring is connected to a tip-tilt mount. A black circle
of 3 cm diameter is ceatered on the plexiglas surface to fiducialize the test surface.

Deformations in the test surface are created by
adjusting the position of one of three threaded screws

Cross Section View which are glued into the back side of the plexiglas.
Mount The three screws are held in place with a threaded nut
- which is attached to a metal plaie across the back of

the sample mount. The metal plate is thick enough to
insure that the plexiglas surface will deform before the
Plexiglas metal plate. The middle screw is located at the center
~ Test Surlace of the 3 cm test area and the other two screws are

a vertically displaced 1 cm on each side of the center
screw. The screws can be translated forward or
backwards to create an even deformation in the surface
(a bump or a dimple). An odd deformation (a S-
shaped deformation) can be created by a combination
Mount of screw adjustments, screwing the top screw back and
the bottom screw forward or vice versa.  The
arrangement of the screws in the back of the plexiglas
is sbown in Fig. 5.

Three Deformation T g
Screws

——

Metal Plate =———

Figure 5 Arrangement of deformation screws

4.3 Vignetting

The next step is to bring the two designs, optical and mechanical, together to insure that no unwanted
vignetting is introduced into the system. Vignetting occurs when the outer portion of the beam is partially blocked
by the components or component mounts in the system. Whean designing an optical system, vignetting calculations



are important to insure that the sizes of the optical components meet the beam size requirements of the experiment.
The actual vignetting calculations for the two channel Ronchi test are not provided, but some of the guidelines
followed are provided.

First, when ordering optical componeats it is & good rule of thumb to allow 20% of the component diameter
to be used for the mounting of the component. Second, be aware of any surfaces in the design that are tilied relative
to the beam path, like the test surface and the beamsplitter in the two channel Roochi design. The beam that strikes
the test surface needs to be large enough to overfill what appears to be an elliptical test surface due to the tilt of the
surface and the clear aperture of the beamsplitter, which is reduced becavse of tilt, must be large enough to allow
the reflected beam to pass through the mounted beamsplitier. Third, be sure that none of the components on the
table are blocking a beam that is propagating towards another component. For example, the mounts for mirrors M3
andM4iang.4wmdesignedtoimuuthald)emoumforM4didnotblockthebeamﬁ'omM30nitswaytothe
observation screen. Fourth, be sure that the output beams can be positioned on the output device. In Fig. 4 the
output device is the observation screen.

4.4 Grating frequency selection

One of the major advantages to using the Ronchi test is that the dynamic range and resolution of the system
are dependant only on characteristics of the grating used. Therefore if the experiment ever requires that a different
range of deformations be monitored then only the grating needs to be changed, not the whole setup. This gives the
system great flexibility. . '

In order to choose the proper grating spacing oae needs to know the maximum anticipated surface slope,
the relative sphere radius of curvature, and the maximum number of fringes per pupil radius. The proper grating
spacing for a given experiment can be calculated using equation 16, where R is the reference sphere radius of
curvature, @, is the maximum anticipated surface slope, and m is the desired sumber fringes per pupil radius.

2Ra_, (16)
m

In the Ronchi test, the reference sphere
radius of curvature is determined by the imaging
T lens focal length. For the free oil surface, the

= ks, / anticipated maximum slope was found from Fig. 6
N ~ to be 26.7 um/mm. To enhance data evaluation,
the optimum number of fringes per pupil radius is
10. Fewer fringes would reduce accuracy and
more fringes may introduce additional complexity.

e
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4.5 Diffraction effects
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pattern. A spatial filtering experiment was
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some positive results. A better approach is to use a sine grating instead of a step grating. The sine grating produces

only the diffraction orders 0, and +1. It will remove higher order noise from the fringe patterns and increase fringe
clarity. ’
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5. CONCLUSIONS

A two channel Ronchi instrument has been designed to contour the free oil surface. It can produce two
orthogonal fringe pattems at the same time, thus allowing a dynamic surface to be monitored in real time. It is also
designed to allow for easy implementation of a phase measuring capability in order to distinguish between bumps
and dimples on the surface.
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Sensitivity of two-channel Ronchi test to grating misalignment
William S. Meyers and H. Philip Stahl

Rose-Hulman Institute of Technology
Center for Applied Optics Studies
5500 East Wabash Avenue
Terre Haute, Indiana 47803

ABSTRACT

The Ronchi test is performed by placing a periodic grating at or near the focus of an optical
system. Like most geometric tests, the Ronchi test measures wavefront slope instead of the
contour of the wavefront like conventional interferometry. Therefore when a Ronchi test is used to
determine the contour of a non-symmetric surface, two orthogonal slope interferograms or
Ronchigrams are required to reconstruct the surface. A two-channel Ronchi test with a horizontal
and a vertical grating can be used to reconstruct a non-symmetric test surface. This paper
investigates the errors introduced by different rotational and translation misalignments of the
gratings in the two-channel Ronchi test relative to one another. The Ronchigrams are analyzed
with a modal technique based on Zernike polynomials. The severity of each misalignment is
dependant upon the frequency of the gratings used and on the f/# of the system.

1. INTRODUCTION

The Ronchi test is performed by placing a periodic structure at or near the focus of an
optical system and monitoring the interference pattern or Ronchigram produced. The Ronchi test
can be explained as a geometric test or an interferometric test. From a geometric ray point of
view, the fringes in a Ronchigram are the result of the deviation of a ray from its ideal path
because of slope errors. As an interferometric test, the fringes in the Ronchigram are produced
from the interference between overlapping diffraction orders. The overlapping diffraction orders
are sheared versions of the original wavefront. Therefore the Ronchi test can be approached as a

shearing interferometer.

Shearing interferometers measure the slope of a wavefront instead of the height of the
wavefront like conventional interferometers. One of the disadvantages of shearing interferometers
is the requirement of two orthogonal slope maps of the surface, either x-slope and y-slope or r-slope
and 6-slope, to completely reconstruct a surface without symmetry. If the surface under test is
rotationally symmetric or if it has a static contour a single channel Ronchi test, Fig. 1, could be
used to reconstruct the surface. The two orthogonal slope maps could be generated by rotating the
grating ninety degrees during the experiment or by taking one photograph and analyzing it for
both slope maps. However, if the surface under test is not rotationally symmetric and is dynamic,
a two-channel Ronchi instrument must be implemented, Fig. 2.

The main differences between the two-channel Ronchi instrument and the single channel
instrument are the addition of a second measurement module and a pupil relay module. The relay
module creates an intermediate image of the surface under test at the plane of the second
beamsplitter. The image created by the relay module is the object for both of the measurement
modules. The addition of the second measurement module allows orthogonal slope information to
be obtained in real time. One of the measurement modules obtains a vertical, y-direction, slope
map of the test surface, S, with a horizontal grating. The second module obtains a horizontal, x-
direction, slope map with a vertical grating. The output of each channel is imaged onto an
observation screen. It should be noted that the orientation of the image of the surface at the
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Figure 1 Single channel Ronchi system Figure 2 Two-channel Ronchi system

observation screen for the two-channel system is opposite to the orientation in the single channel
due to the addition of the pupil relay module.

The wavefront at the observation screen is the wavefront reflected off of the test surface
convolved with the Fourier transform of the grating transmission funetion® :

09)]
ot 7{22)

provided that the surface under test is in the front focal plane of the relay module and that the
observation screen is in the back focal plane of the measurement modules. Therefore the grating
transmission function is the important mechanism in the Ronchi test. It dictates how the fringes

in the Ronchigrams should be interpreted.
2. INTERFEROGRAM ANALYSIS

Whenever two coherent wavefronts are at the same point in space, their amplitudes
superimpose to create an interference pattern. The interference pattern contains information
about the differences between the two wavefronts or their optical path difference (OPD). The two
dimensional irradiance pattern created by the interfering wavefronts is known as an

interferogram.
2.1 Interferogram theory

In interferometry, the fringe spacing in an interferogram is proportional to the wavelength
of light used in the interferometer. The irradiance, E(x,y), at any point in an interferogram can be
expressed as a function of the measurement wavelength and the optical path difference (OPD)

between the two interfering wavefronts.



where A = measuremens wavelength

The OPD in a shearing interferometer is given by the difference between the wavefront and the
sheared wavefront.

OPD = W(xy) - Wix+Axy) = AW(xy) 3
where A = shear distance

The relationship between the differential wavefront and the slope of the wavefront is given by:

AWGy) = %ﬁﬂu - a(xy)Ax @
where a(xy) = wavefront slope.

Substituting equation 4 into equation 2 gives the irradiance equation for a shearing interferometer
which is also the irradiance equation for the Ronchi test.

E(xy) = (1 . u(_auL (1 . .,,[2_«&]] o

where A = equivalent wavelength

!
% Ax

Thus, by proper scaling of the shear interferogram via the equivalént wavelength, conventional
interferogram analysis techniques can be used to provide a direct measurement of the wavefront

slope.
2.2 Ronchi test equivalent wavelength

To properly interpret a Ronchigram it is necessary to derive an equivalent wavelength, A,
for the Ronchi test. The type of grating used in the Ronchi test governs how the fringes in the
resultant interferogram or Ronchigram should be interpreted. An expression can be derived for
the equivalent wavelength of the Ronchi system based on the characteristics of the grating and the

geometry of the setup.

Since the lateral placement of the grating in the Ronchi test is arbitrary, the amplitude
sinusoidal grating can be modelled as an amplitude cosine grating whose transmission function
and Fourier transform are:

oo 2EH) - 80) + 860 + 86549 ©
where d = the grating spacing.



The Fourier transform of the amplitude cosine grating is a set of three delta functions.
Substitution of equation 6 into equation 1 yields the expression for the wavefront at the

observation screen.

. )

R R A R

The wavefront at the observation screen is three sheared versions of the original wavefront. The
irradiance at the observation plane is given by:

E(x,yy = <|u(xy) >

Ex, y) =E, +E, +E,_ + (u,u: +uu) + (g, + ugu) + (U, + uyu). ®

The interference fringes in a Ronchigram are produced by the overlapping wavefronts
which are the cross-terms in parenthesis in equation 8. The fringes correspond to changes in
wavefront slope in a direction perpendicular to the shear direction. A low spatial frequency
grating produces a small shear distance which in turn produces almost complete overlap between
the wavefronts. High spatial frequency gratings produce large shear distances which reduce the
amount of overlap. Therefore high frequency gratings do not test the full aperture of the

wavefront.

There are three sets of cross-terms in equation 8. Therefore there are three sets of sheared
wavefronts: (a,b), (a,c), and (b,c). In order to derive an equivalent wavelength for the sine grating,
the dominant fringe pattern in the Ronchigram must be determined. The shear between
wavefronts (a,b) and (a,c) is dominant for two reasons. First, the intensity of the wavefront u,, the
zero diffraction order, is much larger than the intensities of the other two wavefronts. Second, the
fringe pattern produced from (a,b) and (a,c) are identical and they overpower the fringe pattern
produced from (b,c). The equivalent wavelength is dominated by the shear between (a,b) and (a,c).

The shear between wavefronts (a,b) and (a,c) is identical and is equal to :
Ax = %[ ' ©)
where f = focal length, and d = grating spacing.

Because interferograms are analyzed in normalized coordinates, the shear distance should be
normalized by the maximum radius, x_,,, the radius of the exit pupil of the system, which is the
largest radius wavefront which can be tested.

Ax' = A% A
Xy O Xpm

Replacing x,,, by D/2 where D is the diameter of the exit pupil of the system, gives:

Substituting the normalized shear into the definition for A, results in:



Ax = %ﬁg . _2_"_?_2, (10)
A d
X . _d an
O AY 20H)

The equivalent wavelength of the Ronchi test is independent of the measurement
wavelength. It only depends upon the spacing of the grating and the f/# of the system. This
means that the Ronchi test can be performed with either a monochromatic or a white light source.
In addition, the sensitivity of the Ronchi test can be changed by simply changing the grating
frequency. '

2.3 Surface reconstruction from slope information

Wavefront phase estimation from slope data is divided into two categories, modal and
zonal. Zonal techniques estimate the phase value over a local region while modal techniques
determine the coefficients of a set of aperture polynomials.? Rimmer developed a method for zonal
estimation.® An example of a modal technique is the use of the Zernike polynomials to produce a
global fit of the data.*® In both cases, a least squares estimation is used to reconstruct the
wavefront phase. Work has also been published on the estimation of slope data with the use of
Fourier transform techniques.*” This paper uses a modal algorithm to reconstruct the wavefront
shape through a linear combination of Zernike coefficients which are individually fit to orthogonal
x- and y-slope data sets.

All of the trials presented in this paper were analyzed with a modified version of the
FRINGE software originally from the University of Arizona. Table 1 is a listing of the first eight
Zernike polynomials. Table 2 provides the relationships between the Zernike coefficients of the
slope data and the Zernike coefficients of the wavefront shape. For example, the wavefront x-
astigmatism coefficient, A4, is dependant upon the x-tilt from the x-slope map, B1, and the y-tilt
from the y-slope map, C2. Finally, the Seidel coefficients can be calculated from the first eight
Zernike coefficients as shown in Table 3.

Table 1 First eight Zernike polynomials

Term Aberration Fx,y)

0 Piston 1

1 x-tilt x

2 y-tilt y

3 defocus 2(+y?)-1

4 x-astigmatism Xy

5 y-astigmatism 2xy

6 x-coma _ 803 +xy?)-2x

7 y-coma 80y+yY)-2y

8 spherical 607 +y*)-6(x%+y?)+1



Table 2 Wavefront Zernike coefficients from linear combinations of slope Zernike coefficients

Term Aberration Combination
Al x-tilt cannot be determined
A2 y-tilt cannot be determined
A3 defocus B1+C2)/8-A8

A4 x-astigmatism (B1-C2)/4

A5 y-astigmatism (B2-Cl1)/4

A6 x-coma (B4+B3+C5)/9

A7 y-coma (B5-C4+C3)/9

A8 spherical (B6+C7)/16

B coefficients are the x-slope.
C coefficients are the y-slope.
A coefficients are the surface shape.

Table 3 Relationship between Seidel and Zernike coefficients

Seidel term Zernike combination
Tilt Magnitude  ((A1-2A6)%+(A2-2A7)")?
Angle Tan’ ((A1-2A6)/(A2-2A7))
Defocus 2A3-6AB:((A4)’+(A5)H)?
The sign of the radical is chosen to minimize the magnitude.
Astigmatism Magnitude +2((A4)%+(A5)H)2
Angle 0.5 Tan! (A5/A4)
The sign of the radical is opposite the sign used for defocus.
Coma Magnitude 3((A8)*+(AT)H?
Angle Tan! (A7/A8)
Spherical 6AS8

3. EFFECT OF GRATING MISALIGNMENT

When aligned correctly the gratings in the two-channel Ronchi test should be at best focus of
the system, perpendicular to the optic axis, and orthogonal to each other. However, misalignments
can occur in the placement of the gratings which can produce measurement errors. The gratings
have six degrees of freedom, three rotational and three translational as shown in Fig. 3.

Experiments were performed with an f/4, two-channel system shown in Fig. 4 to
investigate the effect of each misalignment on the system performance. In each case, the x-slope
grating was used as the reference and the y-slope grating was manipulated relative to the
reference grating. The gratings used in the experiments were 50 lp/in, 50/50 duty cycle square
wave gratings. The equivalent wavelength for these gratings can be approximated as the
equivalent wavelength for the amplitude sinusoidal gratings. The collimating lens, L1, was
defocused for all the experiments so that there was a sufficient number of sample points across the
aperture. This is analogous to displacing the grating away from focus. Defocusing the collimating
lens produces an initial "tilt" fringe pattern to be produced in both channels. The number of tilt
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fringes can be determined from similar triangles in Fig, 5 and from a knowledge of the grating
frequency used in the experiment.

W, =Bl =X and W =C2= -2
Jed # vorlabls Sk 12)

where ¢, = the distance from the grating to focus,
— v = grating frequency, and fi# = the system f-number.
T Grasing The W,,., term is the initial aberration measured
o2 in the x-slope or reference channel while W___....

is the initial aberration measured in the y-slope
or test channel of the two-channel Ronchi

system.
f—e — 3.1 Rotation about the optic axis

L ] J The first degree of freedom tested is a

P 1 rotation about the optic axis. The fixed x-slope
Figure 5 Geometry to determine tilt fringes grating and the variable y-slope grating are at

the focal plane of the system and are

perpendicular to the optic axis but they are not
orthogonal to each other. The y-slope grating is rotated by an angle 8. This rotation reduces the
amount of y-tilt in the y-slope map by cos(0) and increases the amount of x-tilt in the y-slope map
by 8in(0). Therefore a measurement error is introduced into the C1 and C2 terms in Table 2.

& .\ 13
cl ﬂ# gn@®) C2 r cos(6) (13)

To determine the effect of such an error, the relationships in Table 2 and Table 3 were
simulated with a spreadsheet program. The Bl term was set equal to the expression given in
equation 12 (ideal case), the C1 and C2 terms were set equal to the expressions given in equation
13 (error case), and all the other B and C terms were set to zero. The misalignment causes an
error in the amount of Seidel defocus and astigmatism measured. The error in the astigmatism is
twice the defocus error. The results of the theoretical model for the Seidel astigmatism is shown in
Fig. 6. Figure 6 compares the magnitude of the error for different grating frequencies and system

fi#'s.



Generally, a misalignment is not critical until it alters the amount of aberration measured
by a quarter of a wave. The sensitivity of the Ronchi test to non-orthogonal gratings is directly
proportional to the grating frequency and inversely proportional to the system f/#. Figure 7
compares the experimental results with the theoretical model for non-orthogonal gratings. The
experimental data agrees with the theoretical prediction. A rotation of +4° is acceptable for the
£/2.25 system while a 50 lp/in grating while only a rotation of +2° is acceptable for the same system
with a 100 lp/in grating.

Etfect of Grating Frequency and f/#
Rotation about the Optic Axis
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Figure 6 Comparison of different grating
frequencies and system f{/#’s
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Figure 7 Comparison of experimental and
theoretical data

3.2 Rotation parallel to the grating structure

To test the effect of rotation parallel to the grating structure the fixed and varisble grating

point b
Jine 2

(12743
e 3 paint o
1 Mismlignod Geating
Aligned Grating
«< hine 1

Figure 8 Geometry for rotation parallel to

grating structure

are at the focal plane of the system and are
orthogonal to each other but the variable grating
is not perpendicular to the optic axis. Asthe
grating is tilted the number of fringes in the test
channel Ronchigram increase. This
misalignment alters only the C1 term not the C2
term. The theoretical model for this
misalignment is derived from the geometry
shown in Fig. 8. Figure 8 shows the wavefront
leaving the collection lens and coming to a focus.
A grating is shown in its aligned position and
then in its misaligned position.

In order to determine the number of
fringes in the Ronchigram, it is necessary to
know the amount of the grating which is
illuminated. This is determined by calculating
the length of the line segment ab in Fig. 8. The
equations for lines 1, 2, and 3 are:



Line 1 z=2f4y (14)
Line2 z=-2fky (15)

Line3  z=wum(@)y+e¢, a6

The coordinates of points a and b can be found by computing the intersection of the appropriate
lines. The number of fringes produced in the Ronchigram from the line segment ab is:

e e i o
¥ - tan(8) 24 + wn(6) 2 - un(d)  2¥ + tan(6)

Theoretical models were generated with the C2 term equal to the expression given in
equation 17. The only Seidel aberration that was affected by this misalignment was astigmatism.
Figure 9 compares the amount of aberration introduced for various grating frequencies and system
f/i's. Once again the amount of aberration introduced is directly proportional to the frequency of
the grating and inversely proportional to the system f/#. However, a change in the system f/# will
cause a slightly greater change in the amount of aberration introduced than a change in the
grating frequency would. Figure 10 shows the comparison of the experimental results and the
appropriate theoretical curve for the system shown in Fig. 4. Both curves have the same form
although the theoretical curve is slightly higher than the experimental curve. This can be
accounted for in the inaccuracy of the measurement of the system f/#. The theoretical defocus

curve lies upon the x-axis.
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3.3 Rotation perpendicular to the grating structure

A theoretical model for the misalignment of the test grating perpendicular to the grating
structure has not yet been developed. The area of the grating that is illuminated is identical to
the area of the grating that is illuminated in the case of rotation parallel to the grating structure.
The difficulty is that rotating the grating in this manner causes the fringes to "fan out", expanding



on one side of the Ronchigram and compreasing
on the other side. Figure 11 shows the
experimental results. This misalignment does
not have a significant effect on the performance
of the system shown in Fig. 4.

Grating Rotation
Perpendicular to Grating Structure

3.4 Translation along the optic axis

The fixed and variable gratings are
perpendicular to the optic axis and are
orthogonal to each other, but the test grating is
displaced along the optic axis. Displacing the

M ating towards focus reduces the number of
= 2 Atometem ¢ Coma * Spherical | gf:ingetsg that are present in the Ronchigram
while displacing the grating further away from
Figure 11 Experimental results for rotation focus increases the number of fringes. This

perpendicular to the grating structure misalignment introduces an error into the C2
term.

. €V 8¢,y
AN a8

where B¢, = the amount of translation along the optic axis.

This error should affect both the Seidel defocus and astigmatism coefficients. Translating
the grating further from focus will cause an increase in the amount of astigmatism measured while
not changing the amount of defocus. This is because the variable channel Ronchigram will have
more fringes than the fixed channel Ronchigram. The software characterizes the additional fringes
as astigmatism. Translating the grating towards focus will increase the amount of astigmatism
and decrease the amount of defocus measured. This is because the test channel Ronchigram will

have fewer fringes than the reference Ronchigram.

Figure 12 compares the effect of this misalignment on systems of various f/#'s and grating
frequencies. The magnitude of the error is directly proportional to the grating frequency and
inversely proportional to the f/# of the optical system. Figure 13 shows the agreement between the
experimental results for the system shown in Fig. 4 and the theoretical model for that system. A
translation misalignment along the optic axis becomes important for the {/2.25 system at 0.5 mm

for a 50 lp/in grating and +0.25 mm for a 100 lp/in grating.
3.5 Translation perpendicular to the grating structure

Displacing the test grating perpendicular to its grating structure relative to the reference
grating has no effect on the spacing of the fringes in the Ronchigrams. However if this
displacement can be performed in & controlled periodic motion, for instance with a piezo-electric

transducer, then it can be used to implement phase measuring techniques.®

3.6 Translation parallel to the grating structure

Translation parallel to the grating structure does not have any effect on the spacing or
orientation of the fringes in the Ronchigrams.
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4. CONCLUSIONS

One method to fulfill the requirement of two orthogonal slope maps to reconstruct a surface
is to use a two-channel Ronchi instrument. The effect of different grating misalignments were
investigated. The results presented are based on the use of Zernike polynomials to fit the slope
data and then using linear combinations of those Zernikes to reconstruct the surface shape. Of the
six possible misalignments only four had an effect on the performance of the two-channel Ronchi
instrument, the three rotational misalignments and the translation along the optic axis.

The severity of these misalignments is dependant upon the frequency of the grating used
in the test and on the f/# of the system. Fast optical systems with higher frequency gratings
require more care in the alignment of the gratings than slower optical systems with low frequency
gratings. The misalignments become critical when they alter the amount of aberration measured
by a quarter of a wave, A4 The point at which each misalignment becomes critical depends
upon the characteristics of the system and grating being used. The two most critical
misalignments, independent of system specifications, are translation along the optic axis and

rotation about the optic axis.
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Vector formulation for interferogram surface fitting

David J. Fischer, John T. O'Bryan, Robert Lopez, and H. Philip Stahl

Interferometry is an optical testing technique that quantifies the optical path difference (OPD) between a
reference wave front and a test wave front besed on the interference of light. Fringes are formed when
the OPD is an integra! multiple of the illuminating wavelength. The resultant two-dimensional pattern
is called an interferogram. The function of any interferogram analysis program is to extract this OPD
and to produce a representation of the test wave front (or surface). This is accomplished through a
three-step process of sampling, ordering, and fitting. We develop & generalized linear-algebra vector-
potation mode! of the interferogram sampling and fitting process.
Key words: Interferometry, polynomial fitting, optical testing.

1. Introduction

Whenever two coherent wave fronts exist at the same
point in space at the same time, they superimpose.
The irradiance value at that point is determined by
the optical path difference (OPD) between the two
wave fronts. Interferometry uses this phenomenon
to quantify the shape of a given surface or wave front
relative to some reference. The two-dimensional
jrradiance pattern created by the OPD between the
test and reference wave fronts at all points is com-
monly called an interferogram. The challenge is to
-extract a representation of the test surface (or wave
front) from such an interferogram (assuming that we
have perfect knowledge of the reference surface or
wave front). This process is accomplished by a three-
step process: data sampling, ordering, and fitting.
While the sampling and ordering steps can be
accomplished by a number of different methods,
fringe digitization, phase-measuring interferometry,
or Fourier decomposition, to produce a convenient
representation of the surface under test, this sampled
and ordered data (regardless of how they were ac-
quired) are generally fit to some polynomial set (such
as the ubiquitous Zernikes). Fringe digitization soft-
ware has been available to accomplish this process
since the 1960’°s! and has been discussed at length for
Zernike polynomials by using conventional summa-
tion notation with some matrix notation. >
Zernike polynomials are used because they form a
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basis set for circular apertures. But they are not a
basis set for noncircular apertures. In these cases
other polynomial sets, such as Zernike-Tatian® or
Zernike-Mahajan’# polynomials (for annulus aper-
tures) and Legendre® polynomials (for

apertures), may provide better results. Ideally an
interferogram analysis software package should allow
for easy substitution between these and other polyno-
mial sets; however, most programs are developed
exclusively for Zernike polynomials. The first step
in developing a more general software package capa-
ble of using any basis set is to develop a general
mathematical model of the fitting process, completely
independent of any specific polynomial set.

In this paper we review the interferogram analysis
process (sampling, ordering, and fitting) and develop
a linear-algebra vector notation that clearly and
concisely describes the interferogram gsampling and
fitting process. The development is completely gen-
eral (i.e., not limited to Zernike polynomials) and
assumes only that the polynomials form a basis set.
The approach performs a least-squares fit of the data
to the polynomial set, orthogonalizes this result with
a Gram—Schmidt algorithm, and solves for the final
weighting coefficients of the initial polynomial set
with a backsubstitution technique.

2. interferogram Analysis
Because an interferogram has nearly infinite resolu-
tion, the actual number of points that can be mea-
gured is limited only by the sampling technique.
There are two main methods for acquiring the data:
digitization and phase-measuring interferometry.
With digitization, data points are acquired by sam-
%ling along the center of the light or dark fringes.
sually the interferogram is photographed, and the




image is placed on a digitizing tablet where the data
points are digitized by a human operator. Alterna-
tively, the image can be acquired with a video camera
and digitized by image-processing techniques. Phase-
measuring interferometry by contrast is an electronic
process where a video camera samples the wave-front
phase at every point within its detector array—thus
creating a high-density, uniform grid of data. An
illustration of the difference in the two techniques is
shownin Figs. 1and 2. In either case the function of
the sampling process is to acquire data in the form m,
x,y, where x, y gives the position of the point and m is
the order of the OPD at that point.

Once the interferogram has been sampled, the
acquired data must be ordered. This is because
interferometry measures the wave-front phase ¢ (or
OPD) in units of modulo 27 (or modulo A). Thus,
even though a point in the interferogram represents a
quantity greater than 2w, no measured quantity is
larger than 2. For example, an x, y point may have

a phase of 97, but the measured m will equal 0.5, °

which is found by taking the magnitude modulo 2.
Therefore the phase must be artificially recon-
structed by ordering the data. This is done by
assigning integer order number values to each series
of measured data points. :

For manual or video digitization, data points along
a given fringe all have the same order, and each
adjacent fringe has an incrementally larger order
number. Typically such data consist of integer m
values, regardless of whether one digitizes bright or
dark fringes. Assignment of these values is accom-
plished by the human operator, in the case of manual
digitization, or the video digitization software itself.
Alternatively, a phase-measuring interferometer,
which is not confined to sampling only along & given
fringe, measures fractional values of m. However,
its data are still limited by the modulo 27 condition
and must be ordered by a process called phase unwrap-
ping.
To illustrate the sampling and ordering process,
consider a one-dimensional parabolic wave front inter-
fered with a planar wave front to produce an irradi-
ance pattern (Fig. 3). From the irradiance profile it
is easy to visualize how an interferogram measures
the total phase modulo 2n. Bright fringes occur for
even multiples of 7 (i.e., & = 0, 2, 4m, .. .), and dark
fringes occur for odd multiples of = (i.e., & = m, 37,

Fig. 1. When an interferogram is sampled by digitization, data
points are usually placed along each fringe (either bright or dark).
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Fig. 2. When an interferogram is sampled by phase-measuring
interferometry, data points are placed at each detector Jocation.
This usually results in a uniform high-density sampling of the
pupil.

5w, ...). If the pattern is sampled on each dark
fringe, all the m values will be 0.5. In the typical
ordering process, these fringes will be assigned values
ofm=1,2, 3, 4,5 Clearly the result represents a
parabolic wave front (Fig. 4), but there is a constant
phase offset between the original wave front and the
reconstructed data. To extract the original wave
front, it is necessary to fit the ordered data to a
parabolic function. Furthermore, if this were a real
wave front with aberrations, the only way to deter-
mine their contribution is to perform a general
polynomial fit.

Fitting is typically accomplished by a least-squares
method with a Gram-Schmidt orthogonalization.
Traditionally interferograms are fit to Zernike polyno-
mials for several reasons. Zernikes look like classi-
cal Seidel aberrations. They provide good results for
the circular aperture interferogram of most optical
components. And, since they are orthogonal, they
are easy to manipulate. Thus it is possible to add or
subtract coefficients without seriously affecting the
quality of the fit. In general these coefficients pro-
vide information about how flat the surface is, whether
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Fig. 3. Top curve, One-dimensional glice of a parabolic wave
front. Bottom curve, Resultant irradiance pattern formed when
this slice interferes with a plane wave front. The plusses along
the bottom of the graph repreeent data points sampled at irradi-
ance minima.
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3 ic shape.

a feature is a bump or hole, whether the part is
concave or convex, and what aberrations are present.

3. Vector Formulation

A. ideal Surface

The surface height function at any point in the exit
pupil Z(x, y) can be represented by a linear combina-
tion of M polynomials F(x, y) and their weighting
coefficients G: ’

M
Z(x,y) = 121 F{(x,¥)G (1)

where the polynomials are typically a standard set
- guch as the Zernike polynomials. If the coefficients
are known, the surface function at any given point is
found by summing the product of each polynomial
multiplied by its coefficient. However, in optical
testing the coefficients are not known. Thus to
determine a representation of the surface function
one samples and orders the wave front at many
discrete points, fits these datatoa polynomial set, and
solves numerically for the coefficients.

B. Discrete Data

As discussed in Section 2, the first step in interfero-
gram analysis is to sample (and order) the continuous
surface function producing & set of N discrete data
points. With Eq. (1) each sampled point in the pupil
(x,,y-)bhasa measured value Z, (where r i8 the sample
index) that can be represented by a linear combina-
tion of M polynomials and coefficients:

M
zr(xn Yy r) = )zl F}(xn Yy P)Gj! (2)

where N > M. Alternatively, the value at each
namplepointcanbeaxpressednsamntﬁxofM
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polynomials multiplied by a matrix of M coefficients:
G,

[Zr] = [F](xr, y,), ey Flf(xn yr)] . (3)
) Gu

Now, if the sampled and ordered data are thought of
as a sequence of N points,
Z,
| )
Zy
the complete set of all N data points can be repre-
sented as a matrix of polynomials multiplied by the
coefficient matrix:
Zl Fl(xhyl)o e vFU(xlayl) Gl
=l : @

Zy Fi(xn, ¥n), - - - » Fadxn, ¥N) Gu

To simplify this notation, we define three vectors.
First, the measured values are defined as a vector
with N rows. Second, each polynomial F; evaluated

over all N data points is a vector with Nrows. Third,
the M coefficients are a vector with M rows:
Z, F}(x i ¥1) G, ’
Z= . ’ Fj = ' , G= . (6)
Zn F}(xm ¥N) Gu

With this notation, the sampled data can be repre-
sented by

Z=[F,...,FulG. o

C. Fitting to the Polynomials

The second step in solving for the polynomial coeffi-
cients is to fit the N data points to the polynomial set.
This is typically accomplished with a Jeast-squares
method, where S is defined as the sum of the square
of the difference between the data points and the
fitted polynomials. With the vector notation, S is
given by

S= ‘[z - [FI! R 9FM}G]|21 (8)

or, as more commonly expressed by summation nota-
tion, ’

N M 2
S= 21 [z, - 2‘; GFxn y,)] : 9)
‘r=s J=
If a perfect fit were possible, S would be equal to zero,
because there would be no difference between the
measured values and the representing polynomials
evaluated at the corresponding points. However,
there are always differences between the real surface
and its representation. Therefore S is nonzero.




The function of a least-squares fit is to find the
coefficients for a given set of polynomials, which
minimizes S.

The coefficients are found by taking the derivative
of S with respect to each coefficient and setting the
result equal to zero. For example, minimizing S for
G, gives

N N M
j_‘z:1 Z,Fyx,y,) = g ,2, GFxn ¥ Fs(xy,). (10)

The result of minimizing S for all coefficients can be
expressed by using summations in matrix form as

[ N
El ZrFl(zn yr)

N
L; Z,Fy(x,., yr)
[ N ] N '!
rzl Fl(xn yr)Fl(xn yr) e ;1 Fll(xr) yr)Fl(xn yr)
N N
2, Filan y)Futzn ) - 2, Futn yFudr, 37
G,
x| - |. (1)
Gy

This expression can be greatly simplified with vector
notation:
Z'Fl F"Fl...F"Fu
o=l S (e
FM'Fl...Fy'FM
where the dot product of the vectors F; and F, gives

the sum of the products of both polynomials over
every data point:

: (12)
Z ¢ Fu

N
F.-F;= gﬂ(x,. ¥ F(xr ¥r). (13)

And the dot product of the vectors Z and F, gives the
gum of the products evaluated at all data points:

N
Z-F= E Z,F{x,, y)- (14)

D. Solving for the Coefficients Assuming Orthogonal
Potynomial Vectors

If the F vectors are orthogonal over the sampled data
points, the minimization process produces a diagonal

matrix,
Z F, F,’F,... 0
N |G,
Z-Fy 0 ...Fy-Fy
and the coefficients can be found by multiplying both

sides of the equation by the inverse of the diagonal
matrix:

(15)

[Z-F |
TAE

: (16)
Z * Fu

—

[ U112

However, most orthogonal polynomials are only
orthogonal over a continuous range, not over discrete
points. Thus the solution process is not as easy as it
seems at first. To overcome this limitation, there
are three possible approaches. The first is to assume
that the polynomials are orthogonal. This may work
if there is enough sampled data to approximate a
continuous range, but it can introduce error. The
second is to take the inverse of the nondiagonal
matrix, but this can be pumerically difficult and
inaccurate. Third, the polynomials can be orthogo-
nalized. Typically, thisis accomplished with a Gram-
Schmidt technique.

4. Gram-Schmidt Orthogonalization

A. Gram-Schmidt Orthogonalization Process

The Gram-Schmidt orthogonalization process takes
M arbitrary vectors in an M -dimensional space (M
space) and creates M orthogonal vectors that form a
basis for that space. A basis for an M space is
essentially a coordinate system for that space. Since
the basis vectors are linearly independent, all other
vectors in that space may be formed from linear
combinations of the basis vectors.

To illustrate the Gram-Schmidt process, we con-
sider two arbitrary vectors F, and F, (Fig. 5), which
are to be orthogonalized to produce new orthogonal
vectors ®, and ®; (Fig. 6). To begin the orthogonal-
jzation process, we define the first orthogonal vector
&, to be the first arbitrary vector F;. Now, with the
first vector orthogonalized, all other vectors can be
orthogonalized by projecting the current vector onto
each preceding orthogonalized vector (Fig. 7). Each

F,

3 -h
>

Fig 5. Two arbitrary vectors in 8 two-dimensiona! space. The
ﬁrnvoctorhdeﬂnedmhetheﬁrnonhopndvmrofthespwe.
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Fig. 6. Two orthogonal vectors in a two-dimensional space. The
function of the Gram-Schmidt orthogonalization process is to
create these two vectors.

projection is subtracted from the current vector,
leaving the orthogonal component. This process is
continued for the rest of the vectors, each time
subtracting off the projections of the current vector
onto all previous vectors. This creates a set of M,
orthogonal vectors, which replaces the original set of
vectors.

In general, the Gram-Schmidt orthogonalization
process can be expressed for any vector F, as

IdF-e
=F. — i B}
® =F, 21 PR (17)
By letting D;,, represent the coefficient of o,
D=l 18
lis ™ o, 4" ’ ( )

the orthogonalization of any vector F; can be ex-
pressed as

i1

®,=F,- 2D, (19)
=l

These orthogonalized vectors are now substituted

into the fitting process, replacing the original arbi-

trary polynomial vectors.

B. Applying the Gram—Schmidt Process to the Vector
Formulation

From the fitting process, the polynomial vectors, F,
through Fy [Eq. (7)], are orthogonalized and replaced
by the new orthogonal vectors, &, through @, result-
ing in the calculation of a new and different set of
weighting coefficients. These new coefficients are
pamed [ for j in 1-M. Therefore the original coeffi-
cient vector G is replaced by the vector I. The

....é;-z
P03 ‘
. =b-—213
? ’ 31'31% 31
— s —-
ho&la
3.3, '

Fig. 7. Gram-Schmidt orthogonalization process, which sub-
tracts the projection of the second vector onto the preceeding
wector to create an orthogonal vector.

4742 APPUEDOP“CS/VOL&,NO.Z:/1SOptombOr1993

original measured surface function values are now
fitted in terms of the new vectors:

Z=[®,..., (20)

The system is then solved, as shown above, by
multiplying both sides of the minimized least-squares
fit equation by the inverse of the resultant diagonal
matrix. The I coefficients are now known and can
be used to represent the original surface:
[ z * ¢1 T
e, 12
: (21)
z M ou
LM

8. Finding G in Terms of T by Backsubstitution

" The polynomials fitted to the measured values are

typically a standard set, such as the Zernike polynomi-
als. Therefore, since the polynomials do not change,
the coefficients found in the fitting process of the
original polynomials can be used to describe the test
surface and serve as a basis of comparison between
other test surfaces. However, when the F, through
F) vectors were orthogonalized, the polynomials Fy
through Fy were modified, creating a new set of
polynomials, ®; through Py, that are dependent on
the measured values. Thus the T coefficients that
compose I' cannot serve as a basis of comparison,
gince every set of I' coefficients is related to a different
set of polynomials. Because of this, it is necessary to
find a means to convert T'to G.

The first step in finding G in terms of T is to express
the orthogonalization process by using matrix nota-
tion. From Eq. (19) the orthogonalization of all M
vectors can be shown as follows:

o] [F/S
o, |F
0 ... 0]
D, 0 ... ol
_|Dy Dg O ... O} :
- s |Lew”
.L_Dm Dy Dun-1 0
(22)

Calling the matrix of the D;, coefficients 2 for simplic-
ity, we can solve Eq. (22) for the orthogonal vectors,
where .7 is an identity matrix of size M X M:

°]T Flr

=(s+2)!
F\7

: (23)
L




Recalling Egs. (7) and (20), we can clearly see that two
equivalent representations of the surface exist, one
using the original polynomial vectors and the other
using the orthogonalized polynomial vectors. There-
fore the following statement can be made:

[Fl, ces ,F.p = ["1, ces ,"u]r.
Now, if we rewrite Eq. (23) using transposes
[@,... 8] = (F +2)F, ..., Full, (25)

and the transpose of both sides of the resultant
equation is taken, an expression for the matrix of ®,
through @, in terms of F, through F), is produced:

(@, ... O] =[Fy, ..., Ful(r + 2)']. (26)
Substituting Eq. (26) into Eq. (24),

[Fli sy FK}G = [Flv cecy FM][(J + 9)-1]”]"' (27)

and dividing both sides by the matrix of the polyno-
mial vectors provide the desired solution of G in
terms of the D,, coefficients and I:

G=[(# +2)'T.

6. Conclusion

Interferometry is an optical testing technique in
which information about a test surface is extracted
from an interferogram. This is accomplished with a
three-step process. First, the data are sampled, usu-
ally by one of two main methods: digitization or
phase-measuring interferometry. Second, the sam-
pled data points are ordered. Third, the ordered
data are fit to a polynomial set. Typically, Zernike
polynomials are used because they form a basis set for
circular apertures. However, they are not a basis set
for noncircular apertures. In these cases, other
polynomial sets such as Zernike-Mahajan (for annu-
lus apertures) and Legendre (for rectangular aper-
tures) may provide better results. In this paper we
developed a completely general linear-algebra vector-
notation model to describe the polynomial fitting
process independent of the polynomial set. The
basic process is to describe the sampled data as a
linear vector: Fit that data to an arbitrary polyno-
mial set by using a least-squares method. Orthogo-

(24)

(28)
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nalize the polynomials to the data vector by using a
Gram-Schmidt technique. Solve for the original
polynomials weighting coefficients by using a backsub-
stitution technique.

From an implementation point of view, by treating
the polynomial set as a vector, it is possible to write a
algorithm that has no knowledge of the actual polyno-
mial set being fitted. Thus it is simple to change
between polynomial sets for various aperture shapes.
Also, it is not necessary to actually solve for the
orthogonal polynomial coefficients to arrive at the
original polynomial weighting coefficients by using
the backsubstitute technique.

This project was supported in part by NASA re-
search grant NA63-1300 from NASA-Lewis Research
Center, Cleveland, Ohio, and was a result of H. Philip
Stahl’s participation in the American Society of Engi-
neering Educators/NASA Summer Faculty Fellow-
ship Program. Special thanks is given to Alex Pline
of NASA-Lewis.

References

1. M. P. Rimmer, C. M. King, and D. G. Fox, ‘‘Computer program
for the analysis of interferometric test data,” Appl. Opt. 11,
2790-2796 (1972).

2. J. Y. Wang and D. E. Silva, *“Wave-front interpretation with
Zernike polynomials,” Appl. Opt. 18, 15101518 (1980).

8. Cheol-Jung Kim, “Polynomial fit of interferograms,” Ph.D.

- dissertation (Optical Sciences Center, University of Arizona,
Tucson, Ariz., 1982).

4. D. Malacara, J. M. Caprio-Valadez, and J. J. Sanchez-Mon-
dragon, ‘‘Wave-front fitting with discrete orthogonal polynomi-
als in & unit radius circle,” Opt. Eng. 24, 672-675 (1990).

5. J. L. Lewis, W. P. Kuhn, and H. P. Stahl, *“The evaluation of a
random sampling error on the polynomial fit of subaperture test
data,” in Optical Testing and Metrology 11, C. P. Grover, ed.,
Proc. Soc. Photo-Opt. Instrum. Eng. 854, 88-94 (1988).

6. W. H. Swantner and W. H. Lowrey, ‘'Zernike-Tatian polynomi-
als for interferogram reduction,” Appl. Opt. 18, 161-163 (1980).

7. V. N. Mahajan, “Zernike annular polynomials for imaging
systems with annular pupils,” J. Opt. Soc. Am. 71, 75-85
(1981).

8. V. N. Mahajan, “Zernike annular polynomials for imaging
systems with annual pupils: errata,” J. Opt. Soc. Am. 71, 1408
(1981).

9. J. L. Rayves, “Least-squares fitting of orthogonal polynomials
to the wave-aberration function,” Appl. Opt. 81, 2223-2228
(1992). -

4743



Mechanism for surface fitting of interferometric slope data
David J. Fischer
H. Philip Stahl

Rose-Hulman Institute of Technology
Center for Applied Optics Studies
5500 East Wabash Avenue
Terre Haute, IN 47803
(812) 877-8253

ABSTRACT

One approach for obtaining a surface representation is to fit Zerike polynomials (in a least squares sense) to
discrete data points in the full aperture. The mathematics for this have been described using both matrix' and vector
notation?. Additionally, vector notation has been used to describe how to obtain a surface representation from orthogonal (x,
y) slope data>. The result of that paper was a matrix operator for linearly combining the first eight Zemnike polynomial
coefficients fit to x- and y-slope data to produce a Zernike polynomial surface representation. This paper extends that
process by presenting a systematic approach for obtaining the linear relationship between slope and surface using the first 49
Zemike polynomials.

1. INTRODUCTION

Full-aperture interferometry techniques are used to measure surface characteristics of a test object via non-
destructive optical methods.! Traditionally, Zernike polynomials are fit (in a least squares sense) to the measured data to
produce a standardized representation of the surface. The parameters which describe the surface’s characteristics are, the
weighting coefficient of the Zernike polynomials. This fitting process has been explained in detail using both matrix and
vector analysis"z.

While surface interferometry is he simple to analyze, it is not always used; in some cases it is better to measure
slope, such as the Ronchi test does. Because, these techniques yield slope data in a particular direction, to create a surface
representation, it is necessary to measure slope in two orthogonal directions: in the x- and y-directions. The data is not fit to
the derivatives of the Zernike polynomials because the derivatives are not orthogonal. Rather, to reconstruct the surface,
these orthogonal slope data sets are fit to Zernike polynomials to create a representation of the test object’s slope, and
combined according to a linear operator.3 This paper describes the process of creating a polynomial surface representation
using the first 49 Zernike polynomials based on a least squares fit of Zernike polynomials to orthogonal slope data.

2. FITTING ZERNIKE POLYNOMIALS TO THEIR DERIVATIVES

The first step in creating a Zernike polynomial, surface representation based on fits of orthogonal slope data is to
determine which linear combinations of Zernike polynomials will recreate the x- and y-derivatives of the Zemnike
polynomials. To do this, it is first necessary to examine the Zemike polynomials.

2.1 Description of Zernike polynomials in R terms

The Zemike polynomials are a basis set, orthogonal over a unit circle. There is an infinite number of these
polynomials, since they are constructed from a generation formula, but in many applications only the first 36 or 49
polynomials are used. They are commonly used for fitting data from interferometric applications because they represent the
Seidel aberrations well.4 In this paper, two different notations will be used to represent the Zernike polynomials. They are
the Z, notation and the R™ notation. In the case of the Z, notation, the subscript, n, indicates which polynomial is
being represented. The subscript is a positive, integer value starting at zero. Thus, Z,, refers to the eleventh Zernike
polynomial. For the R:" notation, r is the radial magnitude of the polynomial and m is the radial frequency. The sign of m
also designates whether the trigonometric term involved in the Zemike polynomial is a sine or a cosine: m 2 0 designates a
cosine and m < 0 designates a sine. Finally, r 2 0 always, and r 2 Iml always. These cases are summarized below:
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Z, =aZemike polynomial
n indicates polynomial referred to.

R™ = a Zernike polynomial

r = radial magnitude
The i . ] gin (mB), m< 0
trigonometric term is cos (mB), m2 0

Figure 1. Notation of Zernike polynomials

In the remainder of this paper, the Zernikes will be considered using rectangular coordinates (x and y), not polar (r and 6).
Examples of this notation follow:

R = Z,, = (4r°-3)rsin (26) = 82’y + 8xy>~6xy

R; =2y = 1_'3cos (30) = x’—i*!xy2

Figure 2. Illustration of notation of Zernike polynomials

2.2 Selection of terms to fit

The pext step is to create the x- and y-derivatives from the Zernike polynomials. The data is not directly fit to the
derivatives of the Zernike polynomials because the derivatives are not orthogonal. For each of the first 49 Zernike
polynomials, use linear combinations of Zernike polynomials. Instead of trying a combination of all 49 polynomials to
determine which polynomials construct a given derivative, the R,tm notation clearly indicates which polynomials to include
in the linear combination.

The first step is to determine the highest order term in the summation. This is found according to the following
rules given in Figure 3, below:

dR ™
To find 3;' use R®%!  unlessm+1>r-1,thenuse  RPY!

dR.™
To find a—y' use R:f';”” unless m+1 > r-1, then use R;f';‘-l)

(a) m20
RI

ad
To find X' use R™Y'  vnless m-11>r-1, theause  RELY'

3R |
To find 5;' use R;‘3*" unless im-11>1-1, thenuse R *D
() m<0

Figure 3. The four cases for determining the highest order term of a linear summation
which produces the derivative of the Zernike polynomial specified by the initial R term.




The rest of the terms used in the linear summation are found from the highest order term. This is shown below, with
an example following.

To find 5;' form20even,use R®~%,R®"4 . R%OR" R .., R%, ..,RY
a
To find al;' form>0,0dd,use R®“2R™"4 . RLR®,R® Rl ,..R!

Tofind == form<Oeven,use RP*ZLRP*Y,.., RLRE LRI, .LR;Z, LR
m

dR
To find a;' form<0,0dd, use RP*ZRE*4 . RILR® L REYL LRI, LR

Figure 4. Selection of all terms used in a linear summation to produce a given derivative. The initial R
value is the one chosen according to Figure 3. It should be recalled that m S r always, so R terms involving
a superscript value greater than its subscript will not exist, and are not used in the linear summation.

To find the x-derivative: To find the y-derivative:
® Z,=R} Z, = Ry
® R}-R? R} R;?
(© RZLRSRLRYRY R;% RF?
@ Z,,Z4,72,2,2, ZZ,
oR! dR;

5
© 57 =byZy +bZ+bZ 4 biZy 4 beZy 5 = epZyp +esLs

Figure 5. An example of selecting the terms of the linear summation. (a) The Zemnike
polynomial being considered. (b) Finding the highest order term of the summation for
the x- and y-derivatives. (c) All terms involved in the linear summation for the creation
of the x- and y-derivatives. (d) The terms expressed in Z, notation. (¢) The linear
summation used to create the derivatives; by;, bg, by, by and ¢;5 and c5 are constants.

This process can be repeated for the x- and y-derivatives of the first 49 Zemike polynomials.

2.3 The fitting process

With the polynomials necessary to create each derivative now chosen, it is possible to find the amount of each
polynomial needed. Each polynomial in the linear summation is multiplied by an arbitrary constant, as illustrated in Figure
5. To give the exact representation of the derivative in terms of Zemike polynomials, numerical values for these constants
were found using a computer algebra application, MAPLE V, on a NeXT computer running NeXTSTEP v3.0. Two
approaches to the fitting were used: for simpler summations a simple MAPLE procedure worked well, but for certain higher
order terms more effort is involved.

The simple MAPLE procedure begins with a linear sum of the Zernike polynomials that will create the derivative.
Each Zemike in the sum is multiplied by a constant. Then, all coefficients are matched between the linear sum and the
derivative. (Coefficient matching is the process of finding the coefficients of a given power of x or y on both sides of an



equation and setting these terms to be equal.) The set of equations generated by coefficient matching are solved for the
constants of the summing polynomials. The MAPLE V codes for doing this for the x- and y-derivatives of the 13th Zernike
are shown below.

sum := b0*z0 + bl*z3 + b2*zd + b3*z8 + bd*zll: - The linear sum of

sum := expand(sum): Zemike polynomials
d:=13: - Consider the 13th Zernike

linequset:={}: coeffset := (}:

for k from 0 to 4 do Match the

#create equation matching x-coeffs of x-derivative to x-coeffs of sum )
linequx.k := coeff(zx.d, x, k) = coeff(sum, x, k); --f— coefficients to
#create equation matching y-coeffs of x-derivative to y-coeffs of sum POWers of x

linequy.k := coeff(zx.d, y, k) = coeff(sum, y, k);
#add the equations to the set of equations \M&whtbe
linequset := linequset union {linequx.k, linequy.k}; coefficients to

#add the coeff to the set of coeffs powers of x
coeffset := coeffset union {b.k}; Solve the equations
for the weighting

od:
# solve for the coeffs / cocfione
solns:=s0lve(linequset, coeffset)
The values of the

solns := {bd = 5., b3 = 5., b2 = 3., bl = 3., b0 = 1.} -e—————Weighting
coefficients

Figure 6. The MAPLE procedure vsed to find the weighting coefficients of the linear sum 1o create the x-
derivative of the 13th Zernike polynomial. The coefficients b4 .. b0 correlate to by, bg, by and by, respectively

sum := c0*z5 + c1*z12: - The linear sum of

sum := expand (sum): Zemike polynomials
d:=13: - Consider the 13th Zernike

linequset:={): coeffset := (}:

for k from 0 to 3 do Match the

#create equation matching x-coeffs of x-derivative to x-coeffs of sum .
linequx.k := coeff(zy.d, x, k) = coeff(sum, x, k); -t— cocfficients to
#create equation matching y-coeffs of x-derivative to y-coeffs of sum powers of x

linequy.k := coeff(zy.d, y, k) = coeff(sum, y, k};
#add the equations to the set of equations \Matchtbc
linequset := linequset union {linequx.k, linequy.k}; coefficients to

#add the coeff to the set of coeffs powers of x
coeffset := coeffset union (c.k}; Solve the equations
od: for the weighting
# solve for the coeffs / coefficients.
solns:=solve(linequset, coeffset); The values of the
solns := (cl = 5., c0 = 3.} - weighting
coefficients

Figure 7. The MAPLE procedure used to find the weighting coefficients of the linear sum to create the y-
derivative of the 13th Zemike polynomial. The coefficients c1 and cO correlate to ¢y and cg, respectively,

Unfortunately, for some cases, this process does not work. The above procedure does not produce integer values for
the coefficients. When this happens, it is necessary to use more finesse.

The procedure starts by first identifying the highest order terms in the derivative. The coefficients of these terms are
matched to the equivalent terms of the highest order summing polynomials, and the weighting coefficients are solved for.
The highest order polynomials are multiplied by the weighting coefficients, and subtracted from the derivative. The process
is continued by matching the highest order terms of the remainder to the highest order terms of the remaining summing
polynomials and solving for the corresponding coefficients. By iterating this process, all weighting coefficients will be



found. This is illustrated for the x-derivative of the 41st Zemnike:
> zx41;

6 4 3 5 2 7 4 5
784.0 y x + 560.0 x y -336.0y x -112.0y - 840.0y x + 168.0y

2 3
+ 180.0 y x - 60.0 y

> expand(z39);

6 4 3 s 2 7 4 3 2 5
35.0y x -350x y -63.0y x +7.0y -30.0yx +60.0y x -6.0y

> expand(z30);

6 4 3 5 2 7 4 3 2
63.0 y x + 105.0 x y + 21,0y x -21.0y -90.0yx - 60.0y x

5 2 3
+30.0y +30.0yx -10.0y

> expand(z23);

6 4 3 5 2 7 4 3 2
35,0 y x + 105.0 x y + 105.0y x + 350y - 60.0y x - 120.0y x

S 2 3
-60.0y +30.0yx +30.0y -4.0y

> expand(z26);

5yx -10y x +y
> expand(zl19);

4 3 2 5 2 3
150y x +10.0y x -5.0y -12.0yx + 4.0y

> expand(z1l4);

4 3 2 5 2 3
10,0 y x +20.0y x +10.0y -12.0yx -12.0y + 3.0y

> expand(zl0);

lyx -y

> expand(z10);

3 yx -y

> expand(27);



2 3
3. 0yx +3.0y -2.0y

> expand(z2);

Y
expand(z2);

It is seen that the highest order terms in the derivative of Zy; are of magnitude seven: yx‘. x‘y’. y’x’. y7 and there
are also three summing polynomials with terms of order seven: Zsg, Zyg, Zy3. Thus, the first three weighting coefficients are
found by using the coefficients of the yx°, x*y3, and y°x? terms:

> s0lve({35°b8+63*b7+35*b6 = 784, -35+b8+105%b7+105*b6 = 560, -63*b8+21°D7+105*b6=-
336), '
{b8, b7, b6});
>
{(b7 = 8, b6 = 0, b8 = 8)

> assign(*), -
> stuff := expand(zxd4l - (b8+*x39 + b7*330 + b6*x223)),

4 5 2 3
stuff :« 120,00 y x - 24.0y - 60.0yx + 320.0 y
With the first three weighting coefficients found, the process is continued for the yx*, y’x2, and y* terms.

> polve({5*b5+15*bd+10*b3 = 120, -10*b5+10*b44+20*b3 = 0, 1¢b5-5*b4+10*b3=-24), (b5,
bé, b3}):
>
(b3 =« 0, bd =« 6, b5 = 6}
> assign(*);
> stuff2 := expand(stuff - (b5%*z26 + bd4*zl9 + b3*x14));,

2 3
stuff2 = 12,0 yx - 4.0y

The last of the weighting coefficients are found by considering the yxz. and x> terms.
> solve({3*b2+3*bl=12, -1*b2+3*ble=-4}, (bl, b2});
{bl = 0, b2 = 4}

> assign(®);
> stuff3 :s expand(stuff2 - (ba*zl0+bl*z7));

stuffld 1« 0
The final coefficient, a0, must be equal to zero.

Using the described methods, the constants are found for all polynomials in all linear combinations for the x- and
y-derivatives of the first 49 Zernike polynomials. :

3. INITIAL APPROXIMATION OF THE SURFACE FROM THE DERIVATIVE FIT

When the orthogonal, slope data is (least squares) fit to Zemike polynomials, Zy ... Zyg, & set of weighting
coefficients for the x-slope and the y-slope are produced. These weighting coefficients will be termed: By ... By for the x-
slope, and Cj ... Cyg for the y-slope. The weighting coefficients are now used to generate a surface representation composed
of Zernike polynomials.



To find the weighting coefficient for a given Zernike polynomial, first find the largest constant(s) used to recreate its
x- and y-derivatives. The coefficients from the least squares fit corresponding to the largest sumiming constants should then
be added together, and divided by the sum of the largest constants. This gives an approximation to the weighting coefficient
of the Zernike polynomial to represent the surface.

The 13th Zernike polynomial, Z, 4, is considered for an example. The largest constants of the x-summation are bg
and by, with a value of 5. (See Figure 6) The polynomials corresponding to these constants are Z;; and Zg. Likewise, for the
y-derivative, that the largest constant is c,,, also with a value of 5, corresponding to Zy,. To reconstruct, add the x-slope
weighting coefficients (B;; and Bg) and the y-slope weighting coefficient (C;). This sum should then be divided by
a3+ad+a2 = 15 1o normalize. Thus, the initial approximation of the weighting coefficient of Z;4 based oo the slope data is
An = [Bu + Bs + Cu]IlS

4. IMPROVED APPROXIMATION OF THE SURFACE FROM THE DERIVATIVE FIT

The approximation of the Zemike polynomial representation of the surface found above is improved by subtracting
off higher order terms because the higher order terms include lower order terms. The higher order terms which should be
removed are those of the same radial irequenc;nof, but with greater radial magnitude than, the Zernike polynomial being
considered. These terms are found from the R;™ notation, as shown below: ‘

(a) For a given Zernike polynomial R;™, remove the coefficients of: gm R% . R”

1420 red o
(b) For the Zemike polynomial R} , remove the coefficients of: RLR} R},
For the Zemike polynomial Z;3, remove the coefficients: Ap, Ay Ay

Figure 8. (a) Determining higher order terms to subtract from surface approximation.
(b) An illustration of this procedure using Z;;.

The resulting weighting coefficients are thus:



AQ 0

Al = [BO) - A6 - Al3 - A22 - Ad6

A2 = [CO) - A7 - Ald - A23 - A34 - A47

A3 = [Bl + B2]/8 - A8 - Ald - A23 - A3d4

Ad = [Bl - C1]/4 - All - A20 - A31 - Ad4d

AS = [B2 + C11/4 - Al2 - A32 - A4S

A6 = [B4 + B3 + C5]1/9 - Ald4 - A23 - A33 - Ad6
A7 = [BS - C4 + C3)/9 - Al4 - A23 - A34 - A47
A8 = [B6 + C7]/16 - Al5 - A24 - A35 - A4S
A9 = [B4 - C5)/16 - Al8 - A29 - A42

Al10 = [BS + C41/16 - A19 - A30 - A43

All = [B9 + B6 - C7 + C10]/16 - 220 - A3l - Ad4
Al2 = [B10 + B7 + C6 - C9]/16 - A21 - A32 - A4S
Al13 = [B11 + B8 + C12]/15 - A22 - A33 - Ad6
Al4 = [B12 - C11 + C8]/15 - A23 - A34 - Aa47
Al5 = [B13 + C141/24 - A24 - A35 - A4S

Al6 = [B9 - C10]/8 - A27 - A40

Al7 = [B10 - C9]/8 - A28 - A4l

Al8 = [B16 + B1l - C12 + C17]/20 - A29 - A42
Al9 = [B12 + B17 - C16 + C11)/20 - A30 - a4d3
A20 = [B18 +B13 - C14 +C19}/24 - A31 - Adé
A21 = [B19 + Bl4 - C18 + C13)/24 - A32 - Add
A22 = [B20 + B15 + C21]1/21 - A34 - A46

A23 = [B21 + C15 - C20]/21 - A35 - A47

A24 = [B22 + C23)/32 - A35 - a4d8

A25 = [B16 - C17)/10 - a38

A26 = [B17 - C16}/10 - A39

A27 = [B25 + B18 - C19 + C26]/24 - A40

A28 = [B19 + B26 - C25 + C18]/24 - A4l

A29 = [B27 + B20 + C28 - C21}/28 - a42

A30 = [B28 + B21 - C27 + C20]/28 - Ad3

A31 = [B29 + B22 - C23 + C30]/32 - a44

A32 = [B30 + B23 - C29 + C22]/32 - A4S

A33 = [B24 + B31 + C32]/27 - A46
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Figure 9. Weighting coefficients to first 48 Zernike polynomials to reconstruct a
surface based on slope measurements. Bo and Cn are the weighting coefficients
found by fitting x- and y-derivatives of Zernikes to x- and y-slope, respectively.
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5. CONCLUSION

The means to obtain a surface representation of by fitting Zerike polynomials (in a least squares sense) to discrete
data points in the full aperture has been described in the past via matrix and vector notation. Additionally, vector notation
has been used to describe how to obtain a surface representation from orthogonal (x, y) slope data®. The result of that paper
was a matrix operator for linearly combining the first eight Zemike polynomial coefficients fit to x- and y-slope data to
produce a Zernike polynomial surface representation. This paper extended that process by presenting a systematic approach
for obtaining the linear relationship between slope and surface using the first 49 Zernike polynomials.
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ABSTRACT

Ronchi interferomelry is an optical testing technique similar to shearing interferometry. A coherent wavefront is
interfered with a sheared form of itself by placing a periodic grating at, or near, the focus of an optical system. The resultant
interference pattern contains information about the wavefront’s slope in a direction perpendicular to the grating structure. The
wavefront can be reconstructed from two orthogonal slope data sets via the process of sampling, ordering and fitting. This
paper develops a linear-algebra vector notation model of the interferogram sampling and fitting process.

1. INTRODUCTION

Whenever two coherent wavefronts exist at the same point in space, they superimpose, 10 create an interference
pattern. The irradiance at any point, E(x,y), as determined by the Optical Path Difference (OPD) between the two wavefronts is
described by:

E(x,y) = Eo[l +cos(2TnOPD)} m

where
A = measurement wavelength

(2)
The two dimensional irradiance pattern created by the optical path difference at all points is called an irradiance pattern.

For a sheared interferogram, the OPD is given by the difference between the wavefront and its sheared self. This difference is
called the differential wavefront.

OPD = W(x,y) -W(x+Ax,y) = AW(x,y) (3)
By rewriting the differential wavefront as:
’ SW (x,y)
AW (x,y) = TAX = o (x,y)Ax 4)

the wavefront slope can then be written as:
SW(xy) _ AW(xy)

axy) = —5 Ax (5
Therefore, the irradiance pattern can be expressed as:
2n
E(x,y) = Eyl 14 cos (—a) (6)
keq
where:
L ival length
= Ax equivalent wavelengt @)

The Ronchi test is similar to shearing interferometry, only the shear is caused by a periodic grating placed at, or near,
the focus of the optical system under test. Like shearing interferometry, the resultant irradiance pattern (Ronchigram) contains
slope information in a direction perpendicular to the shear direction - the direction of the grating structure. From this
similarity, it can be shown that the Ronchigram can be expressed by:

2n
E(xy) = Eo[l +cos(-ra)] @®)
eq

spze Vel 1755, 1794,



where:

@ = wavefront slope 9)
d

lcq = (10)

d = Grating Spacing (11

F/# = Test Beam F/# (12)

Thus, by proper scaling of the interferogram, conventional interferogram analysis techniques will provide a direct
measurement of the wavefront slope. The challenge is to extract a representation of the test surface from such an
interferogram. This will be done using a linear-algebra vector notation model of the interferogram sampling and fitting process

2. INTERFEROGRAM ANALYSIS

Conventional wavefront interferogram analysis is accomplished via a three step process: data sampling, ordering, and
fitting. The result of this process is a representation of the wavefront under test. For a shear interferogram, such as a
Ronchigram, the analysis provides a representation of the wavefront’s slope in a particular direction (such as the x- or y-
direction). To obtain a representation of the actual wavefront from a Ronchigram, it is necessary to combine two orthogonal
slope representations.

2.1 Sampling

Because an interferogram has nearly infinite resolution, the actual number of points that can be measured is limited
only by the sampling technique. There are two main methods for acquiring the data: digitization, and phase-measuring
interferometry. In digitization, data points are acquired by sampling along the center of either the light or dark fringes. Usually,
the interferogram is photographed and the image is placed onto a digitizing tablet where the data points are digitized by a
human operator. Alternatively, the image can be acquired with a video camera and digitized using image-processing
techniques. Phase-measuring interferometry, by contrast, is an electronic process where a video camera samples the wavefront
phase at every point within its detector array - thus creating a high density, uniform grid of data. An illustration to show the
difference in the two techniques is shown in Figure I and Figure 2:

Fig. 1. An illustration of the placement of data points
when an interferogram is sampled by digitization

Fig. 2. An illustration of the placement of data points when an
interferogram is sampled by Phase-Measuring Interferometry



For this paper, it is assumed that the data is sampled by manual digitization along the dark fringes. The data is
recorded in the form (m,x,y) where (x,y) gives the position of the point and (m) is the order of the sampled fringe - which, as
will be discussed in the next paragraph, is related to the height of the surface in units of 2n.

2.2 Ordering

Once the data has been sampled, it must be ordered. Because the irradiance pattern is proportional to cos(k*OPD) the
data is in units of modulo 2rt or modulo A. Thus, even though a point in the interferogram represents a quantity greater than 2r,
no measured quantity will be larger than 2n. For instance, an (x,y) point may have an (m) that is of magnitude 9x. The
measured (m) will equal r, which is found by taking the magnitude modulo 2n. Therefore, the magnitude of the data must be
artificially reconstructed by ordering the data. This is done by assigning integer order number values to each series of
measured data points. For example, all data points along a given fringe will have the same order and each adjacent fringe has
an incrementally larger order number.

For manually digitized data, this ordering is accomplished by the trained operator. For video digitization, this is
accomplished by image processing techniques. And for phase-measuring, this ordering is accomplished by a process called
phase unwrapping.

2.3 Fitting

Once the data has been sampled and ordered, it must be fitted to a polynomial set to represent the shape of the test
surface. generally, this is accomplished using a least squares method with a Gram-Schmidt orthogonalization. From this fit
several questions can be answered: how flat is the surface, are the features concave or convex, and what aberrations are present.

Traditionally, Zemike polynomials have been used for this representation for several reasons. They look like classical
Seidel Aberrations. They provide a good fit to the circular aperture interferogram of most optical components. And, because
they are orthogonal, they are easy to manipulate. It is possible to add or subtract coefficients without seriously affecting the
quality of the fit.

3. VECTOR FORMULATION
3.1 Purpose of the vector formulation
The purpose of this section is to summarize simply and clearly the analysis process of a Ronchigram using
general linear-algebra vector notation, and to develop a generalized mathematical model with which to explore the effects of:
sampling paramelers, fitting polynomials, and the surface-fitting algorithm on the accuracy of the reconstruction of the test
surface. The remainder of this paper presents a general vector based formulation for the surface-fitting process.

3.2 Representing the measured values

The wavefront function at any point in the exit pupil, W(x,y), can be represented by a linear combination of M
polynomials, Fj(x,y), and their weighting coefficients, Gj. forjin1toM.
M

W(xy) = Y GF(x,y) (13)
i=1
Similarly, the wavefront slope at any point in the exit pupil, a(x,y), can be represented by:
M
a(x,y) = Y GV F(xy) ' (14)
=1

Unfortunately, the Ronchi test does not make general slope measurements. It makes independent measurements of x-slope and
y-slope which can be represented as:



M
@, (xy) = 3 Gy (Fy(x,¥) (15)

i=]

a, (x,y) = iG,,-(F,j(x,y)) (16)
j=1
where: |
F(x,y) = -BFJ—S(:’-Y—) amn
Fi(x,y) = Ef’;é;'—y) (18)

It is therefore necessary to perform two separate fitting operations to determine G,;and Gy;.

A sampled and ordered x-slope interferogram data set be thought of as a series of N measured data points, where N >
M. At any point in the interferogram, (x,, y,). there is 2a measured value, o, whererisin 1 to N, the number of sampled points.

The r¥ measured x-slope value is then written as:
M

O, (%, ¥) = 3 G (F (%)) whereN>M (19)
j=1

Alternatively, the single measured value, a,,. can also be expressed as a matrix of polynomials multiplied by a matrix of
coefficients.

[0, = [Fu (v o Fo (9] ; (20)

GxM

Thus, the entire series of N, measured x-slope values can be represented as a matrix of polynomials multiplied by the
coefficients matrix. (See Equation 21) '

a,, Fo(xny) o Fau(xy)) [ Gy
I = ] | | 21)

%N Foo (X YN oo Fan (X ¥R) | [ Gam

In order to simplify this notation, the measured values can be considered to be a vector with N rows, Likewise, the
coefficients can be viewed as a vector with M rows, and a given polynomial evaluated at all N data points is a vector with N
TOWS. )

R LY I G, . Fi (x,yy)
G= ] G=n ) Fys ! (22)
OGN GxM ij (xn: YN)
Using this notation, the fitted values can be represented by:
8 = [, ... By Ox - @)

3.3 Finding the best fit

The polynomials can be fit using a least squares method, where S is defined as the sum of the square of the difference
between the data points and the fitted polynomials. If a perfect fit were possible, then S would be equal to zero, because there
would be no difference between the measured values and the representing polynomials evaluated at the corresponding points.



However, there are always differences between the real surface and its representation. Therefore, S will be non-zero. The
function of a least squares fit is to find the coefficients, for a given set of polynomials, which minimizes S. This process can be
described using vector notation (See Equation 24), or as more commonly expressed using summations. (See Equation 25)

e[ty eaJod]
N M 2
S= 2 [a“— ZG”.F”. (x, y,)] (25)
r=1 j=1

The coefficients are found by taking the derivative of S with respect to each coefficient and setting the result equal to
zero. For example, minimizing S for G, gives:

N N M
z aerxk (xr' yr) = 2 Xijij (xr' yr) ka (xr’ yr) (26)

r=1 relj=l|

The result of minimizing S for all coefficients can be expressed using summations in matrix form as:

r N F N N = r—Gx]—
Z(X”F” (Xr, )’,) ZFU (xr' yr)Fxl (xr’ yr) ZFXM(XI" yr) Fxl (xr’ yr)
S rel r=1
= I | { 27
N N N
Z aerxM (Xr, yr) 2 Fxl (xr’ yr) FxM (xr' yr) 2 FxM (xr' yr) FxM (X', yr) G
r=1 _1 Lr=1 r=1 J L xM

This expression can be greatly simplified with vector notation (See Equation 28), where the dot product of the vectors Fxi and
F; gives the sum of the products of both polynomials over every data point. (See Equation 29)

a, e Fy, FaoFar ... }-Exl.f:xM N .
| = [ I |Gk , (28)
&XOﬁ,M ﬁ,MOf:,, N oF
N
FueFy = Y Fu(x,y)Fy (xy) (29)
r=1] -

Likewise the dot product of the vectors &, and Fyj gives the sum of the products evaluated at all data points.

N
('ix . f:'xj = za”F”. (x,y,) (30)

r=1

3.4 Solving for the coefficients assuming orthogonal polynomia!l vectors

If the F vectors are orthogonal over the sampled data points, then the minimization process produces a diagonal
matrix (See Equation 31), and the coefficients can be found by multiplying both sides of the equation by the inverse of the
diagonal matrix. (See Equation 32) The process is repeated using the y-slope data to find Gy

x'f:xl i:-xl.f:xl O R
| = I I G, 31

2 = 5y
aXOF,M 0 FxM'FxM

S
o4



[_a; o i-}xl

2 2
1%l
I (32)
- EY
o, e Fym
> 12
L Fanll” ]
However, most orthogonal polynomials are only orthogonal over a continuous range, not over discrete points. To

overcome this limitation, the Gram-Schmidt orthogonalization technique will be used to create two new polynomial sets which
is orthogonal over the x-slope data, and over the y-slope data.

4. GRAM-SCHMIDT ORTHOGONALIZATION
4.1 Summary of the Gram-Schmidt Orthogonalization process
The Gram-Schmidt orthogonalization process takes M arbitrary vectors in an M dimensional space and creates M

onhogogal vectors that form a basis for that space. The Gram-Schmidt Orthogonalization process can be expressed for any
vector, Fxj, as:

- 2 Xj -
(ij = FXJ - Z :‘__i@" (33)

By letting Dj,. represent the coefficient of ®,; (See Equation 34), then the orthogonalization of any vector, Fy;, can
be expressed as shown in Equation 35.

B ed
D,, = —X (34)
q)ll . q)xs
-1
CD,U- = Fy- Dj“d),(s 35)

4.2 Applying the Gram-Schmidt process (o the vector formulation

For the fitting process, the polynomigl vectors, Fx through Fxm (See Equation 22), are orthogonalized and replaced
by the new orthogonal vectors, Py, through ®Pym. Because the original fitting polynomials are replaced by orthogonalized
polynomials, a different set of coefficients is found. These pew coefficients are named T for jin 1 to M. Therefore, the
original coefficients vector, Gy, is replaced by the vector T, . The measured values can now be fitted in terms of the new

vectors.
& =3, .3, ' 36)

The system is then solved, as shown previously (See Equations 31 and 32), by multiplying both sides of the minimized least

squares fit equation by the inverse of the resultant diagonal matrix. The I'x coefficients are now known and can be used to

represent the original surface. (See Equation 37) The process is repeated using the y-slope data to find I'y.



Fax * axl

A
= [ (37)

- -—
ax * q)xM

———

1@l

5. FINDING G, IN TERMS OF T,

The polynomials fitted to the measured values are typically a standard set, such as the Zemike polynomials.
Therefore, since the polynomials do not change, the coefficients found in the fitting process of the original polynomials (See
Equation 32) can be used 1o describe the test surface and serve as a basis of comparison between other test surfaces. However,
when the Fx1 through Fam were orthogonalized, the polynomials F, through F.m were modified, creating a new set of
polynomials, @, through ®,),, that are dependent upon the measured values. Thus, the T, coefficients that compose 'y
cannot serve as a basis of comparison, since every set of I', coefficients is related to a different set of polynomials. Because of
this, it is necessary to find a means 1o convert T to Gy, and Ty 10 G, .

The first step in finding Gy in terms of Ty is to express the orthogonalization process using matrix notation. From
Equation 35, the orthogonalization of all M vectors can be shown as follows.

1] T 3ot
q)xl [_ x1 0 0 xl
Dx‘.’l 0 0
b | =11 |-|D,y Da 0 of| I (38)
] ! ]
- AT 2T
_CDxMJ LFXM_ _Dle Dima - D RVIVE O_J d)xM_J
The matrix of D,js coefficients is called D, for simplicity. Solving Equation 38 for the orthogonal vectors, Equation 39 is
found, where 1is an identity matrix of size M x M.
LT 2T
x1 Fxl
I | = (I+D)~1 (39)
=T aT
q)xM F"M
Recalling Equation 23 and Equation 36, it is seen that two equivalent representations of the surface exist; one using the
original polynomial vectors, and the other using the orthogonalized polynomial vectors. Therefore, this statement can be
made:
[f:” ﬁ,_M G‘ = [&"“ &;xM]rx (40)

Equation 40 is then rewritten using transposes (See Equation 41), and the transpose of both sides of the resultant equation is

taken. This produces an expression for the matrix of Py, through Py in terms of Fai through Fam. (See Equation 42)
T

T
[6” $,M] = (I+Dx>"[ﬁ,l . 41)

li&;u S [ﬁxl f:xMJ [(1+D,)~7 42)
Now, Equation 40 is expressed using Equation 42.
B B O = [By o B 1O+D TR, @3)



Both sides of Equation 43 are divided the matrix of polynomial vectors, and G, is found in terms of the D, js coefficients and
I,. Again, this process is repeated using the y-slope data to find Gy in terms of Iy

G.= [(+D)T (44)
6. WAVEFRONT RECONSTRUCTION FROM WAVEFRONT SLOPE

As was stated in section 2, INTERFEROGRAM ANALYSIS), a representation of the actual wavefront is obtained
by combining two orthogonal slope representations. Therefore, it is necessary to solve for the weighting coefficients for the
actual wavefront. This is done by using a linear combination of the orthogonal slope coefficients. (See Equation 45) The x-
slope and y-slope coefficients are multiplied by the weighting coefficients, H, and H, respectively, which are of size M by M.
It should be noted that the scaling matrices are a function of the selected fitting polynomial set.

. G =BG, +H,3G, (45)
If each element of G depends only upon its corresponding slope elements (i.e. the polynomial set is orthogonal under
differentiation), then the scaling matrices, H; and H,, will be diagonal. However, if the fitting polynomial set is not orthogonal
under differentiation, then fitting errors will occur. 'ﬁne Zemike polynomials are not orthogonal under differentiation; they
exhibit cross-correlation. This cross-correlation is illustrated for the first nine Zernike polynomials:

Term F(x,y) Fylx,y) Fy(x,y)

o] 1 0 0

1 X 1 0

2 Y 4] 1

3 2(x%+y?) -1 4x - dy

4 xz’—y2 2x -2y

5 2xy 2y -2x

6 3(x3+xy2) - 2x 3(3x%+y?) - 2 6xy

7 I xy+y?) - 2y 6xy 3(x%+43y?) - 2
8 6 (x%+y?)? - 6(x%4y?)? + 1 24 (xPexy?) - 12x | 24(x%ys+y?) - 12y

Table 1: Zerhike Polynomials and their derivatives.

There are two solutions to the problem of cross-correlation. The first is to orthogonalize the fitting polynomial sets, Fy
and Fy. The second option is to use a different basis set which is orthogonal under differentiation. The standard Zemike
polynomials are such a basis set; they can be linearly combined to form their own derivatives. This is illustrated for the first
nine Zernike polynomials:



Term F(x,y) Fy(x,y) Fy(x,y)
2y 1 NA NA
Zy x 2y NA
Z, Y NA Zo
Z3 2(x*+y?) - 1 4z, 4z,
Z4 x? - y? 22, -2Z,
Zg 2xy 22, 22,
Zg 3(x3+xy?) - 2x 3(23424) + 2o | 32
Z, 3(xy+y?) - 2y 3z 3(23-24) + 2,
Zg 6(x2+y%)% - 6(x%+yh1? + 1 82 + 42, 82, + 42,

Table 2: The first nine Zernikes and combinations needed to create the x- and y-derivatives.

In a similar manner, the weighting coefficients for a wavefront can be constructed from the weighting coefficients of
the slope representation. This is illustrated for the first nine terms in Table 3.

Term G Gy Gy
Go NA Gyo Gyo
Gy Gyxo = {Gx4*Gx3*Gys)/9 Gyi Gy1
G, Gyo - (Gxs+Gyq+Gy3) /9 G, Gys
G, (Gx1+Gy2) /8 - (Gyg+Gyn) /16 Gy Gy
G, (Gx1+Gy2) /4 = (Gyg=Gya) /16 Gy " Gy
Gs (Gyz+Gy1) /4 = (Gys-Gyg) /16 Gus Gys
Ge (Gxq+Gx3+Gys) /9 - Gyg/15 Gye Gye
G, {Gys-Gyg+Gy3) /9 - Gyg/15 Gyr Gy
Gs (Gyg+Gyr) /16 Gys Gye

Table 3: Weighting coefficients for the wavefront can be created from the slope coefficients.

Recalling Equation 45, the information in Table 3 can be reduced to the scaling matrices, H, and H, as shown:



(0000 0 0 0 0 o]
11
100 - —
550 0 0 0
00000—%000
0000 0-L 0 o
8 16
0looo0o0-L o o
H o =|"3 16 (46)
1 1
00000 0 - 0
11 1
09065000'3
00000%000
1
0000 0 0 f 0 0]
000 000 0 0 0]
ooooo—éooo
io0-r-20o 0 0o o
579
002 000 0 -2 0
g 16
1
b= [00-5000 0 7 0 an
1 i
0000 0-20 0
00000%000
11 i
1
000000 0 & 0O

7. CONCLUSION

Ronchi shear interferometry is an optical testing technigue similar to shearing interferometry. Information about the
slope of a test surface is extracted from interferograms. This is done with three main steps. First, the slope data for two
orthogonal directions is sampled, usually by one of two main methods: digitization or phase-measuring interferometry.
Second, the sampled data points are ordered. And third, the ordered data is fitted 1o a the derivatives of a polynomial set, via a
least squares method and Gram-Schmidt orthogonalization. A linear combination of the slope coefficients is then found to
construct the wavefront from the slope representation.
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A vector formulation for interferogram surface fitting
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Rose-Hulman Institute of Technology, Department of Physics and Applied Optics
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ABSTRACT

Interferometry is an optical testing technique based on the interference of light. Fringes are formed when the
Optical Path Difference (OPD) between & reference beam and an object beam is an integral multiple of the illuminating
wavelength. This OPD is extracted through the process of sampling, ordering and interpolating. This paper develops a
linear-algebra vector notation mode! of the interferogram sampling and interpolation process.

1. INTRODUCTION

Whenever two wavefronts exist at the same point in space, they superimpose, to create an interference pattern.
The irradiance at any point, E(x,y), as determined by the Optical Path Difference (OPD) between the two wavefronts is
described by:

E(x,y) = E, [1+ cos (kOPD)]
where
2xn
k= T
The two dimensional irradiance pattern created by the optical path difference at all points is called an irradiance pattern.

The challenge is to extract a representation of the test surface from such an interferogram. This is accomplished
by a three step process: data sampling, ordering, and interpolating.

2. INTERFEROGRAM ANALYSIS

Because an interferogram has nearly infinite resolution, the actual number of points that can be measured is
limited only by the sampling technique. There are two main methods for acquiring the data: digitalization, and phase-
measuring interferometry. In digitalization, data points are acquired by sampling along the center of either the light or
dark fringes. Usually, the interferogram is photographed and the image is placed onto a digitizing tablet where the data
points are digitalized by a human operator. Alternatively, the image can be acquired with a video camera and digitalized
using image-processing techniques. Phase-measuring interferometry, by contrast, is an electronic process where a video
camera samples the wavefront phase at every point within its detector array - thus creating a high density, uniform grid of
data. An illustration to show the difference in the two techniques is shown in Figure 1 and Figure 2:
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Fig. 1.An illustration of the placement of data points
when an interferogram is sampled by digitalization

Fig. 2. An illustration of the placement of data points when an
interferogram is sampled by Phase-Measuring Interferometry
For this paper, it is assumed that the data is sampled by manual digitalization along the dark fringes. The data is
recorded in the form (m,x,y) where (x,y) gives the position of the point and (m) is the order of the sampled fringe - which,
as will be discussed in the next paragraph, is related to the height of the surface in units of 2.

Once the data has been sampled, it must be ordered. Because the irradiance pattern is proportional to
cos(k*OPD) the data is in units of modulo 27 or modulo A. Thus, even though a point in the interferogram represents a
quantity greater than 27, no measured quantity will be larger than 2x. For instance, an (x,y) point may have an (m) that is
of magnitude 97. The measured (m) will equal 0.5x, which is found by taking the magnitude modulo 2n. Therefore, the
magnitude of the data must be artificially reconstructed by ordering the data. This is done by assigning integer order
number values to each series of measured data points. For example, all data points along a given fringe will all have the
same order and each adjacent fringe has an incrementally larger order number.

For manually digitalized data, this ordering is accomplished by the trained operator. For video digitalization, this
is accomplished by image processing techniques. And for phase-measuring, this ordering is accomplished by a process
called phase unwrapping. Once the data has been sampled and ordered, it must be interpolated to a polynomial set to
represent the shape of the test surface. generally, this is accomplished using a least squares method with a Gram-Schmidt
orthogonalization. From this fit several questions can be answered: how flat is the surface, are the features bumps or
holes, are the features concave or convex, and what aberrations are present.

Traditionally, Zernike polynomials have been used for this representation for several reasons. They look like
classical Seidel Aberrations. They provide a good fit to the circular aperture interferogram of most optical components.
And, because they are orthogonal, they are easy to manipulate. It is possible to add or subtract coefficients without
seriously affecting the quality of the fit.

To help visualize this three step process, two graphs are shown in Figure 3 and Figure 4. Figure 3 shows a one
dimensional parabolic wavefront and the irradiance pattern due to the interference of the parabolic wave with a planar
reference wave. This represents a slice of what would be a two dimensional interferogram. The pluses on the irradiance
pattern represent the sampled points on the dark fringes. The pumbers below the sampled points are the integer ordering.
Figure 4 is a plot of the ordered points. It is easily seen that a parabolic function could be interpolated to those points to
represent the test wave.
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Fig. 4. A plot of correctly ordered data points sampled

from the irradiance pattern shown in Fig. 3

3. VECTOR FORMULATION

The purpose of this section is to describe simply and clearly the analysis process of an interferogram using
general linear-algebra vector notation, and to develop a generalized mathematical model with which to explore the effects
of: sampling parameters, fitting polynomials, and the interpolation algorithm on the accuracy of the reconstruction of the
test surface. The remainder of this paper presents a general vector based formulation for the interpolation process.



Any point in the interferogram, Z(x,y), can be represented by a series of M polynomials, F(x,y), and their
coefficients, G. '
M

Z(xy) = 3, GF; (%)
j=1

Alternatively, the single point, Z(x,y), can also be expressed as a matrix of polynomials multiplied by a matrix of
coefficients.
Gy
[Z (x, y)] = [Fl (xy) ... FM (x, Y):l |
Gy

Thus, if a sampled ihterferogram can be thought of as a series of N measured data points.
[Z (11, )’1) ’ Z(x2, )‘2) y eeey Z(XN, )’N):|

Then it follows that the complete set of all N data points can be represented as a polynomial matrix multiplied by the
coefficients matrix.

Z(x], yl) F] (X], yl) FM(II’ yl) Gl
| = ] | | n
Z(XN, }’N) Fl (XN’ yN) FM(IN’ }’N) GM

In order to simplify this notation, the data points can be considered to be a vector of length N, a given
polynomial evaluated at all N data points is a vector of length N, and the coefficients are a vector of length M.

Z(xl’yl) F’-(xl,yl) Gl -
z=| ! G=| @
Z(XM )'N) F; (IN’yN) Gy

-
[

Using this notation, the polynomial matrix can be expressed using F vectors.

3=l}puﬁd 3
Thus, rewriting equation 1, the surface can be represented as:
2=3G

The polynomials can be fit using a least squares method, where S is defined as the sum of the square of the
difference between the data points and the fitted polynomials. If a perfect fit were possible, then S would be equal to zero,
because there would be no difference between the data points and the representing polynomials evaluated at those points.
However, there are always differences between the real surface and its representation. Therefore, S will be non-zero. The
function of a least squares fit is to find the coefficients, for a given set of polynomials, which minimizes S. This process
can be described using vector notation

| 3:] [2—33”2 = minimum



or as more commonly expressed using summations:

N M 2
SE 2 [Z(xr, y,) = Z Gij (xr, yr):l = minimum
r=1 ji=1

The polynomial coefficients are found by taking the derivative of S with respect to each coefficient and setting
the result equal to zero. For example, minimizing S for G, gives:

N N M

2 2 Filepr) = 3 3G (3D FyCxp3)
r= r=1j=1

The result of minimizing S for all coefficients can be expressed using summations in matrix form as:

3 T r B

N N N
2 26y FyGpyy) 2 F Gy P Gpy) o X Py ey F (xpy) G
r=1 r=1 r=1 1
| = [ ! |
N N N Gy
Z]Z(x,, S ey | S F Gy Py (x3,) o 3 Fag (503, Fyy (x,03,)
L= i r=1 r=1 i

This expression can be greatly simplified with vector notation to give:

2'?1 F1°?1 fM‘ﬁl
| = | IO
2.;\M i‘l.ﬁM"'ﬁM.ﬁM

where the dot product of the vectors F; and F; gives the sum of the products of both polynomials over every data point.
N

Fioki= Y Fi(x,y) Fi(xysy,)

r=1

Likewise the dot product of the vectors Z and F; gives the sum of the products evaluated at all data points.
N
Ze ﬁ‘j = 2 Z(x,y,) Fj(xr, y,)
r=1

Finally, the minimization of S can also be written using the polynomial matrix and its transpose:
872 = s73¢
where the transpose of a matrix is found by rotating its columns so that they become its rows. In the case of the

polynomial matrix (See Equ. 3), the columns are composed of polynomial vectors. The polynomials vectors are rotated to
become the rows of the polynomial matrix, as shown below:



If the F vectors are orthogonal then the minimization process produces a diagonal matrix
ZOF'] ﬁl.f'] 0 .
= [ I |G

R . O]
Z'FM 0 f'MOFM

and the coefficients can be found by multiplying both sides of the equation by the transpose of the diagonal matrix.

G=1| | (5)
2OFM

[Pl

However, most orthogonal polynomials are only orthogonal over a continuous range, not over discrete points.
Thus, the solution process is not as easy as it first seems. To overcome this limitation, There are three possible
approaches. The first is to assume that the polynomials are orthogonal. This may work if there is enough sampled data to
approximate a continuous range, but it can introduce error. The second is to take the transpose of the non-diagonal matrix,
but this can be numerically difficult and inaccurate. And third, the polynomials can be orthogonalized. Typically, this is
accomplished using a Gram-Schmidt technique. Although this introduces extra work, it should pay for itself in the ease
and accuracy it returns in the final solution.

The Gram-Schmidt orthogonalization process takes N arbitrary vectors in an N dimensional space (N-space) and
creates N ortho-normal vectors that form a basis for that space. Ortho-normal vectors are vectors which are orthogonal to
each other, and are normalized, or have a unit length. A basis for an N-space is essentially a coordinate system for that
space, since the basis vectors are linearly independent and all other vectors in that space may be formed from linear
combinations of the basis vectors.

Consider two arbitrary vectors, F; and F,, which are wanted to be replaced by their orthogonal counterparts, @,
and ¢2.

2

o1

To begin the process, the first vector is normalized by dividing by its magnitude.The result is defined as its orthogonalized
counterpart.
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After the first vector is orthogonalized, all other vectors are orthogonalized, in a systematic manner, by projecting the
current vector onto each preceding orthogonalized vector and subtracting that projection from the vector leaving the
orthogonal component.

Fpe®;

This component is then normalized by dividing by its magnitude, and renaming it to its orthogonal counterpart. This
R Fy
Q) =
| 2]

-

?,

process is repeated for each polynomial vector in the system.

For the interpolation process, the polynomial vectors, F (See Equ. 2), are orthogonalized and replaced by the
new vectors, ®. Because the original fitting polynomials, F, are replaced by @, a different set of coefficients are found.
Therefore, the original coefficients, G, are replaced by I'. The system can now be rewritten using the new vectors, and
because the ¢ vectors are orthogonal, the matrix is diagonal.

| ! I |G
2.6M 0 6M.6M

The system is then solved as shown previously by multiplying both sides by the transpose of the matrix. (See
Equ. 4, 5) The I' coefficients are now known and can be used to represent the original surface.
2 L] 61

|34l

-
|

-



4. CONCLUSION

Interferometry is an optical testing technique in which information about a test surface is extracted from an
interferogram. This is done with three main steps. First, the data is sampled, usually by one of two main methods:
digitalization or phase-measuring interferometry. Second, the sampled data points are ordered. And third, the ordered
data is interpolated to a polynomial set. Typically, Zemike polynomials are used and are fitted with a least squares method
and Gram-Schmidt orthogonalization.

In order to describe the interpolating process, a generalized linear-algebra vector notation has been developed in
which the data points, fitting polynomials, and coefficients are viewed as vectors. A least squares fit is applied to the
vector system representing the test surface. The polynomial vectors are ortho-normalized via the Gram-Schmidt process
and then system is solved for the coefficients vector.

5. ACKNOWLEDGMENTS

This project is supported by a NASA Research Grant (NA63-1300) from NASA-Lewis Research Center.
We would like to thank to Dr. Robert Lopez for his help with the mathematics.
We would like to thank John O’Bryan for the time and effort he put into this research.

6. BIBLIOGRAPHY

Koliopoulis, Chris L., “Fringe Analysis of Interferograms”, Laser & Optrionics, pp 65 - 75, May 1985

Koliopoulis, Christ L., “Interferometric Optical Measurement Techniques”, pp 1 - 67, 1981

Malacara, Daniel, J. Martin and Caprio-Valadez and and J. Javier Sanchez-Mondragon, "Wavefront Fitting with
Discrete Orthogonal Polynomials in a Unit Radius Circle”, Optical Engineering, Vol. 24, No. 6, pp 672 - 675, June 1990

Nobles, Ben, Applied Linear Algebra, pp 9-18, Prentice-Hall Inc., 1969

Strang, Glbert, Linear Algebra and its Applications, pp 166-176, HBJ Inc., 1988



APPENDIX B
University of Arizona Optical Sciences Center Colloquium

Presentation Viewgraphs



Surface Deformation Measuring Instrument
for the

Surface Tension Driven Convection Experiment (STDCE-2)
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STDCE

The Surface Tension Driven Convection Experiment
(STDCE) is a fundamental fluid physics experiment
designed to provide quantitative data on the
thermocapillary flow of fluid under the influence of an
increased localized surface temperature.

STDCE flew on the Space Shuttle Columbia in the First
United States Microgravity Laboratory (USML-1) in June
1992.

The second flight of this experiment (STDCE-2) is
scheduled for flight in the Fall of 1995.
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Motivation
On Earth, buoyancy flow caused by gravity limits our
ability to:
grow semi-conductor crystals,
grow biological crystals, and
solidify metal alloys.

by introducing imperfections into the lattice structure.

Also, gravity causes lattice structures to ’sag’ and limits
the size of crystal which can form in suspension.

In microgravity, buoyancy flow is reduced to 10,
offering great promise for material processing in space.

However, thermocapillary flow still exists and must be
understood.
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Surface Tension

Surface tension is a property of a liquid which tends to
minimize its surface area. For, example, surface tension
causes nearly spherical drops to form when rain falls.

On Earth, gravity forces usually overpower surface
tension forces, and liquids form flat surfaces.



Convection

Convection refers to the flow of a fluid. Natural
convection is driven by gravity: colder, heavier fluid is
pulled down, causing warmer, lighter fluid to rise.

On Earth, this buoyancy driven convection occurs
whenever there is a temperature difference within a fluid.

Convection can also be driven by surface tension. As its
temperature is increased, a liquid has a lower surface
tension. Warmer surface liquid is pulled toward colder
surface liquid, which has a higher surface tension. As the
warmer liquid moves across the surface, it draws more
liquid up to the surface, creating a convection current.

This surface tension driven convection, also called

thermocapillary flow, occurs whenever there is a
temperature difference across the surface of a liquid.

C-2.
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Thermocapillary Flow

Thermocapillary flow has two states:

Steady State, and
Oscillatory.

Steady flows are two-dimensional. They are the same for
any symmetrical observer.

Oscillatory flows are three-dimensional.

Surface deformations produced by steady state
thermocapillary flow may produce oscillatory flow.

Oscillatory flow may be detrimental to the crystal growth
process and needs to be studied.
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Science Objectives

The objective of STDCE is to determine the extent and
nature of thermocapillary flow as a function of:

heating mode and level, and
liquid free-surface shape.

The objective of STDCE-2 is to determine the onset
conditions for and nature of oscillatory flow as a function
of: |

heating mode and level,
liquid free-surface shape, and
container size.

To accomplish these objectives, three parameters must be
monitored:

surface temperature distribution,
bulk fluid flow, and
surface deformation.
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STDCE Configuration
The STDCE-2 hardware consists of five basic modules:

Fluid Chamber,
Heat Source (CO, Laser or Cartridge)
Infrared Imager,
Flow Visualization, and
~Surface Deformation.

In STDCE, the fluid was in a single 10 cm diameter
container. In STDCE-2, there will be three containers:
1.2, 2, and 3 cm.

The fluid is heated by illuminating the surface with a CO,
laser beam or a cartridge heater.

Surface temperature is measured by a HgCdTe thermal
imager.

Bulk fluid flow is measured by monitoring the motion of
microscopic particles which have been uniformly mixing
into the fluid. This motion is tracked by shinning a
’sheet’ of light through the fluid and observing the light
scattered from the particles.

STDCE had no means for measuring surface deformation.
But, STDCE-2 will.
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Figure 6

have been recorded. Many sets of tail to head velocity vectors are observed,

indicating particles which were tracked over the entire sampling period.
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Surface Deformation

On Earth it has been observed that both steady-state and
oscillatory thermocapillary flow states produce
deformations of the air/oil free surface.

Steady state flow produces two characteristic steady state
surface deformations:

a ’Pimple’ (bump), and
a ’Dimple’ (hole).

Pimples are produced when the surface is exposed to an
external temperature source over a small area.

Dimples are produced when the same temperature input is
spread out over a larger surface area.

Oscillatory flow produces both standing wave and rotary
surface deformations.
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Purpose

The purpose of this project is to design, build, calibrate,
and fully characterize one or more non-contact (i.e.
optical) prototype instruments for measuring the surface
deformation of an air-oil free-surface under the influence
of a localized thermal load (i.e. CO2 laser beam or
electric heater) which can be integrated into the
anticipated re-flight of the Surface Tension Driven
Convection Experiment (STDCE-2)

While initially these measurements will be performed in a
laboratory environment, the instrument must be capable
of operating in a Space Transport System (STS)
environment for the United States Microgravity
Laboratory flights USML-2 and/or USML-3.



Measurement Approach

Because the surface is a fluid, it cannot be contoured
mechanically. It must be contoured optically.

There are two ways to optically contour a large
two-dimensional reflective surface:

interferometrically or
geometrically.

Generally, it is easier and more accurate to use an
interferometer than to perform a geometrical test because
interferometers measure a surface’s shape while most
geometrical tests measure a surface’s slope.

Unfortunately, because of the large surface deformations,
conventional visible interferometry is not practical. The
fringes will be too dense for the camera to resolve.

One solution to this problem is to use an infrared
interferometer, but such a technique might interfere with
the localized heating process.

Therefore, classical geometrical techniques were
evaluated: Foucault knife-edge test, wire test, Hartmann
screen test, Ronchi test, grating interferometry, or
reflective moire.



Geometrical Techniques

Geometrical techniques measure the surface’s slope
instead of its height. Thus, there are specific advantages
and disadvantages:

Advantage: they are insensitive to tilting of the
free-surface cause by G-Jitter.

Disadvantage: two orthogonal data sets are required to
reconstruct its shape. These two data sets can be either
x-slope and y-slope or r-slope and 0-slope.



Surface Symmetry

A fundamental question which has a profound impact
upon the selection of the final approach is whether or not
the surface is rotationally symmetric.

If the surface is rotationally symmetric, then it may be
possible to satisfy the mission’s science requirements with
just x-slope or r-slope.

But, if the surface is non-rotationally symmetric, then it is
necessary to acquire two orthogonal data sets.

The surface deformations are not rotationally symmetric.

But, their outer edge is at a constant height.



Candidate Techniques

Three techniques which provide data over the entire
aperture were evaluated:

Ronchi grating,
Hartmann test, and
Projected grid.



Projected Grid

In the projected grid approach, a linear or crossed grid
pattern is placed directly in front of an extended light
source (illuminated diffuser screen).

This pattern is then imaged onto the reflective sample
surface. |

The reflected wavefront is re-imaged by another optical
system onto the video camera.

The projected grid approach was base lined early but
eliminated because it lacked sensitivity, dynamic range,
and flexible spatial sampling.



Ronchi Grating

In the Ronchi grating test, a collimated beam of light is
reflected off of the sample surface.

The reflected wavefront is focused through a grating to
form a Ronchigram which is imaged onto a video camera.

The Ronchi approach has many advantages. By selection
of grating it has variable sensitivity and dynamic range.
By location of grating it has flexible spatial sampling.

Unfortunately, it does not provide simultaneous
orthogonal slope data sets.
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Hartmann Screen Test

The Hartmann screen test can provide both x- and y-slope
information simultaneously.

Unfortunately, it has limited spatial resolution.

And, for this application, it is not practical because the
screen would obscure the upper surface flow visualization
function.

A practical implementation of the Hartmann test is to use
crossed gratings in a Ronchi test. However, the complex
patterns produced are difficult to analyze.



Two Channel Ronchi

Another way to obtain simultaneous x- and y-slope data
is with a two channel Ronchi approach.

For the two-channel Ronchi approach, a collimated beam
of light (laser or white) is projected onto the reflective
sample surface. '

The reflected beam is collected, split into separate x- and
y-slope measurement channels, passed through vertical
and horizontal gratings, and projected onto an observation
screen for viewing by a video camera.

A two channel Ronchi instrument was demonstrated
which simultaneously acquires x- and y-slope data for an
input wavefront. Unfortunately, because of packaging,
cost, and schedule issues, a two channel system could not
be implemented.



10910 UOHEAIdSGO

o[eos 0} Jou Surmel(]
10911 [eneds

dunein
T teuoznoyg €1 11

N

¢EN




The Ronchi Test

The Ronchi test is performed by observing the shadow
pattern produced when a focused beam of light is passed
through a periodic structure, such as a line grating.

If the beam is ideal, the shadow pattern looks like the
grating. But, if the beam is deformed, then the pattern is
deformed.

A Ronchigram is obtained when the shadow pattern is
recorded at an image of the surface under test, such that
it is superimposed (’painted’) upon the image.

Information about the surface is obtained by correlating
shadow lines with physical locations on the surface. The
distance between adjacent shadows indicates how much
the surface slope changes between those two locations.

The amount of slope required to go from one shadow to
its neighbor is called the equivalent wavelength.
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The Ronchi Test

The Ronchi test can be explained as either a geometric
ray or an interferometric test.

From a geometric ray point of view, the fringes in a
Ronchigram are the result of the deviation of a ray from
its ideal path because of slope errors.

From the interferometric point of view, the fringes in the
Ronchigram are produced from the interference between
overlapping diffraction orders. The overlapping

wavefronts produce a shearing of the original wavefront.

Therefore the Ronchi test can be modeled as a sheared
wavefront interferometer.



Advantages of the Ronchi Test

Measures Slope: It is insensitive to G-jitter induced
tilting of the oil surface.

Self-Referencing: It is proportional to the difference
between the test wavefront and itself displaced laterally.

Common Path: The wavefront and its sheared self travel
the same optical path, therefore, the test is insensitive to
atmospheric turbulence and mechanical vibration.

Known and Variable Sensitivity (Equivalent Wavelength):
Measurement sensitivity is determined wholly by
geometric factors (grating period and beam F/#) which
can be varied in a controlled manner.

Known and Variable Spatial 'Sampling: The number of
spatial sample points across the aperture can be controlled
by displacing the grating a known distance from focus.



Disadvantages of the Ronchi Test
Slope patterns are difficult to interpret visually.

Two orthogonal data sets (x-, y-slope; or r-, 8-slope) are
required to completely characterize a given wavefront.

Orthogonal slope information can be obtained with a
single-channel system using a crossed-grating, but the
patterns are even more difficult to interpret and analyze.



Shear Interferometry

Whenever two coherent wavefronts are at the same point
in space at the same time, they superimpose to form an
interference pattern called an interferogram.

The irradiance at any point, E(x,y), cause by this
superposition can be expressed as a function of
measurement wavelength and optical path difference
(OPD) between the two interfering wavefronts.

E(xy) = E, (1 + COS (3"—%9) )

where: A = measurement wavelength

For a shear interferogram, the OPD is given by the
difference between the wavefront and its sheared self.

OPD = Wxy - Wx + Axy) = AW(x)y)
where. Ax = shear distance

AW(x,y) = differential wavefront



Shear Interferogram

The irradiance for a sheared interferogram is given by:

E(xy) = E, (1 + COS (Zn A;V(x,y)) )

Relationship between differential wavefront and slope is:

AWxy = a—n-g%’y—)Ax = a(xy Ax

where. a(x,y) = wavefront slope

Inserting this into the irradiance equation gives:

Ey) - E, (1 + cos (2;“]]

eq

where: A, = = equivalent measurement wavelength

4  Ax



E = E,

Ronchigram
Similarly, a Ronchigram is described by:

Exy) = E, (1 + COS (Z;fa/) ]

eq

where: o = W - Normalized Slope

ox’

X
x/=_
r

= Normalized Pupil Coordinate

r = Pupil Radius

d
L o= %
“ 2 FJ#

d = Grating Spacing
Fl# = Test Beam F[#

Thus, with proper scaling, conventional interferogram
analysis provides a direct measurement of the slope.

Finally, if the grating is shifted forward of focus, the
irradiance pattern becomes:

[or)  (Fm?)
ox’ 4 (F[#)

1 + cos (—2—15-

€q




Ronchi Theory

I_. f

Incident
Wavefront
ulx Lyl Coﬂgg*smg U2y U3y
' Grating Observation
Screen

* The wavefront in the front focal plane of the
collecting lens is

ux,,y,)

* The wavefront in the back focal plane of the
collecting lens (without the grating) is the Fourier
transform of the wavefront in the front focal plane.

Wy, = Fluryy) - ;} Zj)



Ronchi Theory Continued

Incident
Wavefront
ULy D COlL‘GC“”Q U2y U343
~ ens
Grating Observation
Screen

« The wavefront is modulated by the transmission
function of the grating.

/

x
u(r, ) = U2 y—}i) 10,,7)
Af A

e At the observation screen, the wavefront is given by

U(X5,yy) = Fluxy',)}

| X3 s X3 V3
U(Xx, = U , * J(—,—
(4327 Jz z) (Az AZ

e When z = f the wavefront at the observation screen
is the original wavefront convolved with the Fourier
transform of the grating transmission function.



Sine Wave Grating

. A sine wave grating is a series of transparent and
opaque straight line bands of the following form.

AAALAAALA
1(x,.y,) =1 + COS(%Z)

. The Fourier transform of the sine wave function is
three delta functions.

F{1 + cos(%)} =8() + 8(x - d) + d(x + d)



Sine Wave Grating

y3
WN Ronchigram
—- |

— X3

l.lb u u

2 c

1 1 |
u(x,y,) = u, + u,(— [x - dl) + u(— [x+d])
373 @« TPz Az |
The irradiance at the observation screen is
E=E, +E,+E, + @ + i) + @ +ug)) + Q] + 1)

The cross terms (overlapping regions) are the terms that
interfere to produce the Ronchigram.
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Flight System

Based upon managerial issues (packaging, cost, and
schedule) and science issues (sensitivity, dynamic range,
and spatial sampling) a single channel Ronchi system was
selected.

The managerial constraints and science requirements were
then appropriately modified.



Surface Deformation Science Requirements
Observe the entire surface for three different sized
chambers: 12 mm, 20 mm, and 30 mm.

Measure slope as small as 5 gm/mm.
Measure slope as great as 30 um/mm without vignetting.

Spatially sample the surface at least 10 times per
diameter.

Temporally sample the surface at least 30 times per
second.

Reconstruct the surface shape at least along a diameter.

Indicate when the oil is filled to its flat surface position.



Science Requirement
Field of View

The surface deformation measuring apparatus must be
able to view the entire surface area of each fluid chamber
at an optimum camera spatial resolution.

The chamber sizes are:
30 mm
20 mm
12 mm

The apparatus’s imaging system should have at least three
different fields of view which can be used to view any of
the three chambers.



Science Requirement
Measurable Surface Features
The apparatus must be able to measure three different types of
surface features:
® A central bump or ’pimple’,
® A central hole or ’dimple’, and

® A large-area temporal oscillatory motion.
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Science Requirements
Central Bump

The central bump is assumed to be spherical in shape
with a constant radius of curvature, given by:

-2
2

Wy = A
.

Maximum Vertical Height, and

where: A
Maximum Lateral Radius.

T

The maximum measurable surface slope of the central
bump occurs at y =1 and is given by:

Ve, o 24
5y ™ r
The maximum measurable surface curvature of the central
bump is given by:

82W(y

T
5)72 max 2

r






Science Requirements
Central Hole

The central hole is assumed to be Gaussian in shape and

is given by:

W(y) =—Aeh

.Maximum Vertical Height, and

where: A =
= Maximum Lateral Radius.

r

The maximum measurable surface slope of the central
hole occurs at y* = r* /2r and is given by:

W) ﬁnAe(ﬂ _ 154
gy ™ r r

The maximum measurable surface curvature of the central
hole occurs at y = 0 and is given by:

2nA _ 634

52W(y

)
2 lmax = 2 2
oy r

r
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Science Requirements
Maximum Resolvable Features

The largest feature that the apparatus must resolve,
whether it is a bump or a hole, is assumed to have the
following properties:

Vertical Height A =250 um
Lateral Radius r=5 mm

The maximum assumed measurable surface slope and
curvature for a bump are:

Slope 100 ym/mm
Curvature 20 um/mm?

The maximum assumed measurable surface slope and
curvature for a hole are:

Slope 75 pm/mm
Curvature 63 um/mm?®



Interferogram Analysis

* A minimum of 3 pixels per fringe are required to
extract the correct information about the test signal.

Rise, Run, and Feature Sign
* A good rule of thumb is to have 4 pixels per fringe.
The curvature corresponding to one fringe per 4
pixels can be calculated by:
-t
| 4ar
where B = curvature, A g = equivalentwavelength,
a = pixel width, and r = radius of test beam.

* Fori, =6048 um,r= 10mm,anda_195umthe
curvature is calculated to be 77.5 um/mm?*

 Since the calculated curvature is larger than the
required curvature of 63 um/mm’, the required
curvature can be resolved and each fringe covers
more than four plxels

Since each cycle of the test function is larger than
four pixel widths the Nyquist rate is met (§; >)&,).




Science Requirement
Minimum Resolvable Feature

The smallest feature that the apparatus must resolve,
whether it is a bump or a hole, is assumed to have the
following properties:

Vertical Height A = 10 um
Lateral Radius r=5 mm

The minimum assumed measurable surface slope and
curvature for a bump are:

Slope 4.0 yum/mm
Curvature 0.8 um/mm’

The minimum assumed measurable surface slope and
curvature for a hole are:

Slope 3.0 yum/mm
Curvature 2.5 yum/mm’



Ronchi Measurement Performance

The performance of the Ronchi system is completely
specified by its equivalent wavelength:

Since the F/# of the measurement beam is fixed by the
optical system, everything depends upon grating spacing.

This dependance is extremely important. It allows for the
measurement capability of the system to be varied on
orbit by simply inserting different gratings into the beam.

If the surface deformation is large, insert a coarse grating.

If it is small, use a fine grating.



0.5 cycles/mm 1.0 cycles/mm 2.0 cycles/mm

Figure 14 Comparison of Slope Detectabfe with Different Gratings



Performance Parameters

Accuracy defines the uncertainty of a given measurement.

For the current sampling system, the measurement
accuracy is approximately A, /8.

A measurement system can report numbers to an arbitrary
precision, but they may not be accurate or repeatable.

The minimum measurable slope of a given system is
defined to be twice its measurement accuracy.

For the current sampling system the minimum measurable
slope is approximately A, /4.

The maximum amount of slope which the system can
measure is determined by how many shadow lines
(fringes) the video camera can clearly resolve in the
Ronchigram.

For the current sampling system, the Ronchigram will be
limited to approximately 16 lines pairs for a maximum
slope of 16 A

eq’



Table 1. Performance Summary for F/2.25 System

=1

Grating 'Grating A Accuracy | Minimum | Maximum
Frequency | Line Space *d Slope Slope
lp/mm] | [mmp] | ™™™ | pmymm) | em/mm] | fem/mm]
0.5 2.0 444.44 55.56 111.11 7111
1.0 1.0 222.22 27.78 55.56 3556
20 0.5 111.11 13.89 27.78 1778
2.5 0.4 88.89 11.11 22.22 1422
5.0 0.2 44.44 5.56 11.11 711
10.0 0.1 2222 2.78 5.56 356




Science Requirements

Temporal Resolution

The third required surface feature which must be
measured is a large-area temporal oscillation.

It is assumed that the period of this oscillation is on the
order of 2 to 5 seconds. Thus, a standard video camera
with a 60 Hz field rate is wholly adequate as the data
acquisition device.

However, if the temporal phenomena were to have a
period of less than about 0.2 sec, then a non-standard
high-speed video camera may be necessary.

It is assumed that there may be high-speed temporal gitter
in addition to the lower-speed temporal oscillation. The
effect of this gitter is to reduce the contrast of the pattern.

To eliminate gitter the camera will need a high speed
shutter and the source will need sufficient output power
to expose the camera.



Science Requirement
Fill Level Indication

Silicon oil has a very low surface tension and spreads
easily on any surface. To prevent it from flowing out of
the container, the rim of the chamber has a sharp edge
that ’pins’ the oil in place and is ’barrier’ coated.

As the container is filled in low gravity, the liquid will
form a deep spherical curvature.

When completely filled, the surface will be flat.
If over-filled, the surface will form a spherical dome.

By placing a grating at a focal point, direct visual
evidence of the oil’s surface state is provided to the
Mission Specialist.

When the oil surface is not flat, there is a line pattern.

As the oil approaches a flat surface, the pattern spreads
out (has fewer lines) until all the lines disappear when the
surface is flat. If the container is under or overfilled, the
lines will reappear and increase in number.



Concave Surface Flat Surface Convex Surface

Figure 9. Fill Level Indicator



Flight System Design

The free surface deformation measuring instrument was
designed in modules.

The flight system consists of six modules:
light source,
projection/imaging,
polarization,
pupil relay,
measurement, and
camera.

Each module overcomes various engineering and/or
packaging challenges while allowing the total system to
meet the science requirements.

Each module is independently assembled and bench
aligned before integration into the final system.

And, each module prevents unnecessary exposure of the
crew to light radiation.
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Source Module

The source module provides a collimated beam of light
which uniformly illuminates the object under test.

This is accomplished with a laser diode and a Galilean
beam expanding telescope.

A laser diode was selected because it is a very-bright
collimated source capable of surviving the launch.
(White-light and LED sources were also considered.)

A commercially available Galilean beam expander was
selected because it is compact and does not have a spatial
filter which could become misaligned during launch.

The beam diameter is defined by the projection/imaging
module’s entrance pupil to be 22 mm in diameter.

The beam is magnified (30X) and truncated to balance
uniformity and power.
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Fluid Properties

The object under test is a free surface of 2 ¢St silicon oil.
It has a refractive index of 1.39

And, an irradiance reflection coefficient of 2.7%.

Because of this low reflection coefficient, the source must
have at least 10 mW of power for the video camera to

observe the Ronchi pattern.

Also, ghost reflections from the optical components can
obscure the oil surface reflection.



Illumination Geometry

Because the free-oil surface is a specular reflector, we
treat it as a plane mirror.

A collimated illumination beam is required to implement
the Ronchi test.

Two illumination geometries were considered:

Off-Axis
On-Axis

The on-axis geometry was selected for several reasons:

Able to get lens closer to fluid surface, thus able to
observe the highest slope errors.

No off-axis projection distortion or cosine scaling.
Easy to package.
The on-axis geometry requires the beam to travel in two

directions through the projection/imaging module. This
can cause ghost reflection problems.
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Polarization Module

The polarization module eliminates ghost reflections and
efficiently uses the source’s available optical power.

Since the projection/imaging module is used in both
directions and because the oil’s reflection coefficient is
small, ghost reflections from the illuminated optical
surfaces can seriously obscure the oil reflection.

To eliminate this problem, the polarization of the beam is
manipulated such that the ghost reflections are vertically
polarized and the oil reflection is horizontally polarized.

This is accomplished with two polarizers and a quarter
wave plate. The first polarizer defines the polarization of
the ghost reflections. The quarter wave plate rotates the
oil reflection polarization by 90 degrees. And, the second
polarizer blocks all of the ghost reflections and passes the
oil reflection.

To maximize the available power, a polarization beam
splitter is used. All of the source’s vertical light is
transmitted into the projection module. And, all of the
returning horizontal light is reflected into the relay
module. A conventional 50/50 beam splitter could be
used, but it would throw away 75% of the available light.
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Projection/Imaging Module
The projection/imaging module has two functions:

illumination
imaging.

Its illumination function magnifies or de-magnifies the
light beam to illuminate the oil surface for each of the
three chamber sizes (12 mm, 20 mm, 30 mm).

Its imaging function has two requirements:

form an image of the different sized surfaces under
test at a fixed sized pupil location, and

pass a reflected wavefront with at least 30 um/mm of
slope without vignetting.

The illumination and imaging functions determine the
magnification properties of this module.

The vignetting requirement determines its F/#.

Packaging issues determines its clear aperture.



Projection/Imaging Module
Illumination Function

The illumination function is accomplished with two
AFOCAL lens pairs, an outer pair and an inner pair.

The outer pair forms a Keplerian telescope with unit
magnification.

The inner pair forms a Galilean telescope which is
positioned about the outer pair’s internal focus and
functions as a pseudo field lens. This lens provides
magnification/de-magnification when it is flipped.

To illuminate the 20 mm chamber, remove the flip lens

such that the 22 mm source beam is relayed unchanged.

To illuminate the larger or smaller chambers, insert the
flip lens either forward or backward to magnify or de-
magnify the beam. The final illumination beam size
depends upon the flip lens magnification factor.

The flip lens is not symmetric about the focal point and
does not rotate about the focal point.
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Projection/Imaging Module
Imaging Function

Imaging of the different sized chambers into a fixed size
pupil is accomplished by running the beam backwards
through the system.

The Keplerian telescope, without the flip lens, relays an
image of the surface in the middle sized chamber.

Inserting the flip lens relays images of the larger or
smaller sized chambers.

For proper imaging the surface must be in the front focal
plane of the lens closest to the oil.

The resultant image will be in the back focal plane of the
last lens of the projection/imaging module. This image is
transferred to the camera module by the pupil relay and
measurement modules - forming a Ronchigram.



Projection/Imaging Module
Vignetting
The projection/imaging module (as well as the pupil relay
and measurement modules) must pass a maximum slope

of 30 um/mm without vignetting.

This places an F/# requirement on these components.
The faster their F/# the more slope they can pass.

Initially, the optical system was designed to fully collect a .
wavefront reflected from a 250 um high, 10 mm diameter

spherical deformation.

The actual design was determined by packaging and
schedule issues.

Packaging factors limit their maximum diameter and
minimum focal length.

Schedule require them to be commercially available.
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Vignetting Requirement

The selected components are F/2.25 (90 mm focal length,
40 mm diameter) achromatic doublets with approximately
2 waves of spherical aberration at 633 nm.

This amount of aberration is acceptable given the
magnitude of the anticipated oil surface deformations.

With proper calibration, this error can be removed from
the measurement.

Please note that the 30 '/,tm/mm specification is not
satisfied for the 30 mm diameter chamber.






Pupil Relay Module

The pupil relay module is a unit magnification AFOCAL
system.

Its original function was simply to extend the beam path
such that the measurement module is at a location where
the mission specialist can insert the gratings.

Additionally, it serves as an alternative measurement
module allowing for gratings to be inserted into parts of
the beam not accessible with the measurement module.

This is required to properly measure hole deformations.
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Measurement Module

The measurement module allows gratings of different line
spacings to be inserted into different locations of the
focused oil reflection forming a Ronchigram.

Since the lens F/#’s are known, changing the grating line
spacing changes the equivalent wavelength.

The equivalent wavelength depends only upon the grating
line spacing and is independent of where the grating is
placed in the beam.

Grating placement in the beam determines the number of
spatial sample points across the beam.

To insure at least 10 sample points per diameter, a coarse
grating must be placed at a greater distance from the
measurement module focus than a fine grating.

The distance from focus for a given grating depends
entirely upon its line spacing:
z = 10d(F#) = 225d

To reconstruct a two-dimensional surface contour,
separate horizontal and vertical gratings, or crossed
gratings can be inserted into the beam.

Radial or circular zone gratings may be tried.
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0.5 cycles/mm 1.0 cycles/mm 2.0 cycles/mm

Figure 14 Comparison of Stope Detectable with Different Gratings



Table 2. Distance from Focus for Spatial Sample Points

|

Grating | Grating | Z for 10 | Z for 15 | Z for 20
Frequen | Line Samples | Samples | Samples
cy Space per per per
[lp/mm] | [mm/Ip] | Diameter | Diameter | Diameter

0.5 2.0 45.0 mm | 67.5 mm | 90.0 mm B
| 10 1.0 | 22.5mm |33.75 mm | 45.0 mm
2.0 0.5 11.25 mm | 16.88 mm | 22.5 mm
2.5 0.4 90 mm | 13.5 mm | 18.0 mm
5.0 0.2 45 mm | 6.75 mm [ 9.0 mm
10.0 0.1 225 mm | 3375 mm | 2.5 mm




Camera Module

The Ronchigram produced by the measurement module is
imaged onto a diffuser plate where a real image is
formed.

This image is viewed by a video camera and recorded on
video tape for subsequent data analysis.

The physical distance from the diffuser screen to the
camera is determined by the focal length of the camera
lens, the camera sensor format, and the size of the image
on the diffuser screen:

h,
d = |1+ M}f;amemlens

rsensor

For the flight system, the diffuser image radius is 10 mm,
the sensor radius is 2.2 mm, and the camera lens focal
length is 28 mm. Thus, the stand-off distance is 155 mm.

The camera is a 1/2 inch format RS-170 video camera.



Calibration

If the optical system were aberration free, the
Ronchigram would be a series of perfect straight lines.

However, given the total number of positive optical
components in the optical system, such a pattern is
impossible

By measuring the beam reflected from a ’perfect’
reference-flat insert, after assembly, these errors can be
characterized and removed from all measured data.



Certification

The prototype was certified by measuring a known
amount of defocus aberration introduced by translating
the collimating lens.

W, i
@0 - L
8 (FJ#)?
where. €, = Longitudinal Aberration

Defocus was used because it is:

easy to introduce,

linear with translation, and

easy to analyze.

Additionally, the prototype measured diamond-turned
samples provided by NASA.

Measurement accuracy is approximately 5%.

The flight instrument will be certified by measuring
known test plates.



Calibration results

For each grating, a linear relationship was observed
between the amount of lens translation and the amount of
measured defocus.

Multiplying each defocus value by the appropriate
equivalent wavelength produces a single line of data.

The average percent error between the data and the best
fit line is * 5%.
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Grating Alignment

The system is designed for the insertion of
interchangeable gratings at various locations in the beam.

Thus, grating alignment errors can be a problem.

The data analysis was evaluated for its sensitivity to error
in the position of one grating relative to its orthogonal
partner:

Rotation about the Surface Normal

Rotation parallel to the Line Structure

Rotation perpendicular to the Line Structure

Translation along Surface Normal

Translation parallel to Line Structure

Translation perpendicular to Line Structure

In general the Ronchi test is relatively insensitive to small
grating placement errors.

Except for translation along the surface normal.



Figure 15 Ronchigrams with Gratings Aligned

y-slope | y-slope
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Figure 16 Vectors Corresponding to the Slope in the Ronchigrams in
Figure 15. :



Figure 17 Ronchigrams with Grating Misalignment

y-slope y-slope

/

x-slope x-slope

Figure 18 Vectors Corresponding to the Slope in the Ronchigrams in
Figure 17.
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Post-Flight Data Analysis

The recorded Ronchigrams are analyzed after the flight to
reconstruct the surface shape along a given diameter - and
if possible over the entire surface.

This is accomplished using standard interferogram
analysis techniques to obtain a polynomial representation
of each slope pattern.

Surface shape along a diameter is obtained by integrating
across the slope data.

With orthogonal data sets, surface shape is obtained by a
linear combination of Zernike polynomials.



Conclusions
A prototype Ronchi instrument to monitor:
Steady State Deformation,
Oscillatory Deformation, and

Fill Level

of a free-surface of oil has been developed, demonstrated
and characterized for STDCE-2.

A single-channel Ronchi configuration has been selected
as the flight instrument.

The flight instrument is currently being designed



Conclusions
The Ronchi test is a shearing interferometer.

The number of sheared wavefronts and the magnitude of
the shear is dependant upon the characteristics of the

grating.

The fringe spacing (equivalent wavelength) in a
Ronchigram is proportional to the spacing of the grating
and the F/# of the test beam.

The dynamic range and sensitivity of the Ronchi test can
be changed by simply changing the grating spacing.

The two channel Ronchi system has an accuracy of * 5%.

For a shearing system, the maximum measurable error is
determined by the surface curvature.
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